![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Để \(A_n=20^n+16^n-3^n-1\vdots 323\)
\(\Leftrightarrow A_n\vdots 17 \) và \(A_n\vdots 19\)
------------------------------
Ta có: \(A_n=(20^n-3^n)+(16^n-1)\)
\(20^n-3^n=(20-3)(20^{n-1}+20^{n-2}.3+...+3^n)\vdots 17\)
TH1: $n$ lẻ:
\(16^n-1=16^n+1^n-2=(16+1)(16^{n-1}+...+1)-2\)
\(=17(16^{n-1}+...+1)-2\not\vdots 17\) do \(2\not\vdots 17\)
Khi đó \(A_n=(20^n-3^n)+(16^n-1)\not\vdots 17\) (loại)
TH2: $n$ chẵn.
\(16^n-1=16^{2k}-1^{2k}=(16^2-1)[(16^2)^{k-1}+...+1]=(16-1)(16+1)[(16^2)^{k-1}+...+1]\)
\(\Rightarrow 16^n-1\vdots 17\). Khi đó \(A_n=(20^n-3^n)+(16^n-1)\vdots 17\)
Mặt khác: \(A_n=(20^n-1)+(16^n-3^n)\)
\(20^n-1=20^n-1^n=(20-1)(20^{n-1}+...+1)\vdots 19\)
\(16^n-3^n=16^{2k}-3^{2k}=(16^2-3^2)[(16^2)^{k-1}+...+(3^2)^{k-1}]\vdots 16^2-3^2\vdots 19\)
\(\Rightarrow A=20^n-1+16^n-3^n\vdots 19\)
Vậy với $n$ chẵn thì $A_n$ vừa chia hết cho $17$ vừa chia hết cho $19$
Hay $A_n$ chia hết cho $323$
Vậy số $n$ là thỏa mãn là tập hợp các số nguyên dương chẵn.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A=\(3^{n+2}-2^{n+2}+3^n-2^n\)
=\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
=\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
=\(3^n.10-2^n.5\)
Có 10 chia hết cho 10 =>\(3^n.10\)chia hết cho 10 (1)
Có \(2^n\)luôn chia hết cho 2 =>\(2^n.5\)chia hết cho 10 (2)
Từ (1) và (2) =>\(\left(3^n.10-2^n.5\right)\)chia hết cho 10
=>A chia hết cho 10
=>\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10 (đpcm)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\times10-2^n\times5\)
\(=3^n\times10-2^{n-1}\times2\times5\)
\(=3^n\times10-2^{n-1}\times10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Đến đây bn kết nốt
Chúc bn học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)