Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
p^4-q^4=(p^4-1)+(q^4-1)
xét hiệu:p^4-1=(p^2)^2-1^4
=(p^2-1)(p^2+1)=(p+1)(p-1)(p^2+1) (*)
Ta thấy p+1 và p-1 là hai số chãn liên tiếp=>(p+1)(p-1)chia hết cho 8.Đặt (p+1)(p-1)=8n
Mặt khác p^2+1 là số chẵn.Dặt p^2+1=2k
thay vào (*) ta có p^4-1=2k8n=16knchia hết cho 16 (1)
mặt khác vì p là số nguyên tố lớn hơn 5=>p^4 chia cho 3 dư 1=>p^4-1 chia hết cho 3 (2)
mặt khascvif p là số nguyên tố lớn hơn 5 nên khi p chia cho 5 sẽ nhận được các số dư là 1,2,3,4
Với p=5m+1=>p-1 chia hết cho 5
Với p=5m+2=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5
Với p=5m+3=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5
Với p=5m+4=>p^4chia cho 5 dư 1=>p^4-1 chia hết cho 5
Tóm lại qua mỗi trường hợp thì p^4-1 đều chia hết cho 5 (3)
Từ (1),(2)và(3)=>p^4-1 chia hết cho 16.3.5=240
chứng minh tương tự với q^4-1=>q^4-1 chia hết cho 240
=>p^4-q^4 chia hết cho 240
Mình chẳng gì ngoài T/H2:p^4-q^4=(p^4+1)-(q^4+1)
Còn cách chứng minh như trên
Mình chưa chắc đâu,lỡ sai đừng trách mình!
Buồn!hu...hu..!
Bạn xem bài này nhé!
http://olm.vn/hoi-dap/question/60049.html
Rút được ra là:
p4-1 chia hết cho 240 với mọi số nguyên tố p>5
Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240
- Do p là số nto lớn hơn 5=> p là số lẻ
+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)
=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8
+ Do p là số lẻ nên p2 là số lẻ => p2+1 chia hết cho 2
p > 5 nên p có dạng
+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3 =>p4 - 1 chia hết cho 3
..............................
Tương tự ta cũng có q4 - 1 chia hết cho 240 .
Vậy (p4-1)-(q4-1) = p4 - q4 cho 240
+) n là số nguyên tố > 5
=> n có dạng 5k + 1; 5k + 2; 5k + 3; 5k + 4
Có: ( 5k + 1)^4 và 1^4 có cùng số dư khi chia cho 5
( 5k + 2 )^4 và 2^4 có cùng số dư khi chia cho 5
( 5k + 3 )^4 và 3^4 có cùng số dư khi chia cho 5
( 5k + 4 )^4 và 4^4 có cùng số dư khi chia cho 5
mà 1^4 - 1; 2^4-1; 3^4-1 ; 4^4 - 1 chia hết cho 5
=> n^4 - 1 chia hết cho 5 với n là số nguyên tố lớn hơn 5 (1)
+) n^4 - 1 = ( n^2 - 1 ) ( n^2 + 1 ) = ( n - 1 ) ( n + 1 ) (n^2 + 1 )
n là số nguyên tố lớn hơn 5 => n là số lẻ => ( n - 1) ( n + 1 ) chia hết cho 8 ; n^2 + 1 chia hết cho 2
=> n^4 - 1 chia hết cho 16 (2)
+) n là số nguyên tố lớn hơn 5 => n có dạng 6k + 1; 6k + 5
Nếu n = 6k + 1 => n^4 - 1 = ( n - 1 ) ( n + 1 ) ( n^2 + 1 ) = 6k ( n + 1 ) ( n^2 + 1 ) chia hết cho 3
Nếu n = 6k + 5 => n^4 - 1 = ( n - 1 ) ( 6k + 6 ) ( n^2 + 1 ) = 6 ( n - 1 ) ( k + 1 ) ( n^2 + 1 ) chia hết cho 3
Vậy n^4 - 1 chia hết cho 3 với n là số nguyên tố lớn hơn 5 (3)
Từ (1); (2); (3) và 5; 16; 3 đôi 1 nguyên tố cùng nhau
=> n^4 - 1 chia hết cho tích 5.16.3
=> n^4 - 1 chia hết cho 240
cách ra là chia hết nhé
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
Link : Câu hỏi của Sáng Đường - Toán lớp 6 - Học trực tuyến OLM
Chúc hok tốt !!!