\(⋮\)240

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2021

cách ra là chia hết nhé

Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5

Chứng minh p4 – 1   240

- Do p >5 nên p là số lẻ                                                                              

+ Mặt khác: p4 –1  = (p –1) (p + 1) (p2 +1)                                                 

--> (p-1 và (p+1) là hai số chẵn liên tiếp  => (p – 1) (p+1)  8                   

+ Do p là số lẻ nên p2  là số lẻ ->  p2 +1  2                                                 

- p > 5 nên p có dạng:

   + p = 3k +1 --> p – 1 = 3k + 1 – 1  = 3k   3  --> p4 – 1  3 

   + p = 3k + 2 -->  p + 1  = 3k + 2 + 1  = 3k +3  3  -->  p4 – 1  3             

- Mặt khác, p có thể là dạng:

+ P =  5k +1 --> p – 1  = 5k + 1 – 1  = 5k    5   --> p4 – 1    5

+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2  +1  = 25k2  + 20k +5  5 --> p4 – 1  5  

+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1  5

+ p = 5k +4 --> p + 1 = 5k +5  5 --> p4 – 1  5                                            

Vậy p4 – 1  8 . 2. 3 . 5 hay p4 – 1  240

Tương tự ta cũng có q4 – 1  240                                                                   

Vậy: (p4 – 1) – (q4 –1)  = p4 – q4    240

15 tháng 2 2021

Link : Câu hỏi của Sáng Đường - Toán lớp 6 - Học trực tuyến OLM

Chúc hok tốt !!!

3 tháng 4 2015

ta có

p^4-q^4=(p^4-1)+(q^4-1)

xét hiệu:p^4-1=(p^2)^2-1^4

                    =(p^2-1)(p^2+1)=(p+1)(p-1)(p^2+1)              (*)

Ta thấy p+1 và p-1 là hai số chãn liên tiếp=>(p+1)(p-1)chia hết cho 8.Đặt (p+1)(p-1)=8n

Mặt khác p^2+1 là số chẵn.Dặt p^2+1=2k

thay vào (*) ta có p^4-1=2k8n=16knchia hết cho 16            (1)

mặt khác vì p là số nguyên tố lớn hơn 5=>p^4 chia cho 3 dư 1=>p^4-1 chia hết cho 3          (2)

mặt khascvif p là số nguyên tố lớn hơn 5 nên khi p chia cho 5 sẽ nhận được các số dư là 1,2,3,4

Với p=5m+1=>p-1 chia hết cho 5

Với p=5m+2=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5

Với p=5m+3=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5

Với p=5m+4=>p^4chia cho 5 dư 1=>p^4-1 chia hết cho 5

Tóm lại qua mỗi trường hợp thì p^4-1 đều chia hết cho 5              (3)

Từ (1),(2)và(3)=>p^4-1 chia hết cho 16.3.5=240

chứng minh tương tự với q^4-1=>q^4-1 chia hết cho 240

=>p^4-q^4 chia hết cho 240

7 tháng 1 2016

Mình chẳng gì ngoài T/H2:p^4-q^4=(p^4+1)-(q^4+1)

Còn cách chứng minh như trên

Mình chưa chắc đâu,lỡ sai đừng trách mình!

                                                                                                                               Buồn!hu...hu..!

14 tháng 6 2016

Bạn xem bài này nhé!

http://olm.vn/hoi-dap/question/60049.html

Rút được ra là:

p4-1 chia hết cho 240 với mọi số nguyên tố p>5

7 tháng 4 2016

câu hỏi tương tự 

Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240

- Do p là số nto lớn hơn 5=> p là số lẻ

+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)

=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8

+ Do p là số lẻ nên p2 là số lẻ => p2+1 chia hết cho 2

p > 5 nên p có dạng

+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3 =>p4 - 1 chia hết cho 3

..............................

Tương tự ta cũng có q4 - 1 chia hết cho 240 .

Vậy (p4-1)-(q4-1) = p4 - q4 cho 240

~~Học tốt~~
17 tháng 7 2020

+) n là số nguyên tố > 5

=> n có dạng 5k + 1; 5k + 2; 5k + 3; 5k + 4 

Có: ( 5k + 1)^4 và 1^4 có cùng số dư khi chia cho 5 

       ( 5k + 2 )^4 và 2^4 có cùng số dư khi chia cho 5 

       ( 5k + 3 )^4 và 3^4 có cùng số dư khi chia cho 5 

      ( 5k + 4 )^4 và 4^4 có cùng số dư khi chia cho 5 

mà 1^4 - 1; 2^4-1; 3^4-1 ; 4^4 - 1 chia hết cho 5 

=> n^4 - 1 chia hết cho 5 với n là số nguyên tố lớn hơn 5  (1)

+) n^4 - 1 = ( n^2 - 1 ) ( n^2 + 1 ) = ( n - 1 ) ( n + 1 ) (n^2 + 1 ) 

n là số nguyên tố lớn hơn 5 => n  là số lẻ =>  ( n - 1) ( n + 1 ) chia hết cho 8 ; n^2 + 1 chia hết cho 2 

=> n^4 - 1 chia hết cho 16  (2) 

+) n là số nguyên tố lớn hơn 5 => n có dạng 6k + 1; 6k + 5

Nếu n = 6k + 1 => n^4 - 1 = ( n - 1 ) ( n + 1 ) ( n^2 + 1 ) = 6k ( n + 1 ) ( n^2 + 1 ) chia hết cho 3

Nếu n = 6k + 5 => n^4 - 1 = ( n - 1 ) ( 6k + 6 ) ( n^2 + 1 ) = 6 ( n - 1 ) ( k + 1 ) ( n^2 + 1 ) chia hết cho 3 

Vậy n^4 - 1 chia hết cho 3 với n là số nguyên tố lớn hơn 5 (3) 

Từ (1); (2); (3) và 5; 16; 3 đôi 1 nguyên tố cùng nhau

=> n^4 - 1 chia hết cho tích 5.16.3

=> n^4 - 1 chia hết cho 240