p195457−1chia hết cho 60

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

dùng định lí nhỏ phecma c/m bổ đề

23 tháng 4 2019

Ta có:\(p^{2016}-1=\left(p^4\right)^{504}-1^{504}=\left(p^4-1\right)\cdot M=\left[\left(p^2\right)^2-1^2\right]\cdot M=\left(p^2-1\right)\left(p^2+1\right)\cdot M\)

\(=\left(p-1\right)\left(p+1\right)\left(p^2+1\right)\cdot M\)

Do p là số nguyên tố lớn hơn 5 nên p lẻ.

\(\Rightarrow\) p-1 và p+1 chẵn

\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮4\)

Lại có: \(\left(p-1\right)p\left(p+1\right)⋮3\) mà p là số nguyên tố lớn hơn 5 nên \(\left(p-1\right)\left(p+1\right)⋮3\)

Do \(\left(3,4\right)=1\Rightarrow\left(p-1\right)\left(p+1\right)⋮12\)

Do p không chia hết cho 5 nên p có các dạng:\(5k\pm1;5k\pm2\)

Nếu \(p=5k\pm1\Rightarrow p^2=25k\pm10+1=5m+1\)

Nếu \(p=5k\pm2\Rightarrow p^2=25k\pm20k+4=5n-1\)

\(\Rightarrow p^4\) chia 5 dư 1

\(\Rightarrow p^4-1⋮5\)

Do \(\left(5,12\right)=1\Rightarrow\left(p^4-1\right)\cdot M⋮60^{đpcm}\)

2 tháng 11 2019

Ta có: \(m^2\equiv0,1,4\)(mod 5)

TH1: \(m^2\equiv1\left(mod.5\right)\)

\(m^2+4\equiv0\left(mod.5\right)\)

-> mà m khác 1 -> ko phải snt

TH2: \(m^2\equiv4\left(mod.5\right)\)

\(m^2+16\equiv0\left(mod.5\right)\)

-> chia hết cho 5-> không phải số nguyên tố

Vậy \(m^2\equiv0\left(mod.5\right)\)-> m chia hết cho  5

18 tháng 12 2016

bt trên sẽ là  (a4n)+ 3 . a4n  - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)

mặt khác vì a là số tự nhiên , a không chia hết cho 5

=> a4n = (a2n) là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)

 nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5

nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5

 Vậy bt trên chia hết cho 5

Ta có:vì p là số nguyên tố >3 nên p ko chia hết cho 3 nên p^2 chia 3 dư 1 nên p^2-1 chia hết cho 3(1)

Ta lại có:Do p là số nguyên tố nên p chia 8 dư 1;3;5;7 suy ra p^2 chia 8 dư 1 do đó p^2 -1 chia hết cho 8(minh chứng munh rồi)(2)

Mà (3,8)=1(3)

Từ (1),(2) và (3)

Suy ra p^2-1 chia hết cho 24 hay (p^2-1)/24 là số nguyên (đpcm)

Đây là toán lớp 6 mà bạn

20 tháng 10 2019

Hôm qua mình đi thi hsg trường lớp 9 bài y sì nhe -.-

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Với $p$ là số nguyên tố không chia hết cho $5$ thì $(p,5)=1$

Áp dụng định lý Fermat nhỏ ta có:

\(p^{5-1}\equiv 1\pmod 5\)

\(\Leftrightarrow p^4\equiv 1\pmod 5\)

\(\Rightarrow \left\{\begin{matrix} p^{4n}\equiv 1^n\equiv 1\pmod 5\\ p^{8n}\equiv 1^{2n}\equiv 1\pmod 5\end{matrix}\right.\)

\(\Rightarrow A=p^{8n}+23.p^{4n}+16\equiv 1+23.1+16\pmod 5\)

\(\Leftrightarrow A\equiv 40\equiv 0\pmod 5\)

Vậy $A$ chia hết cho $5$