\(\sqrt{n}\)<\(\sqrt{n!}\)<
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 7 2021

\(\sqrt{n+1}-\sqrt{n}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}\)

\(\sqrt{n+1}+\sqrt{n}>2\sqrt{n}\Leftrightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}\)

\(\sqrt{n+1}+\sqrt{n}< 2\sqrt{n+1}\Leftrightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}>\frac{1}{2\sqrt{n+1}}\)

Do đó ta có đpcm. 

28 tháng 2 2018

Đặt A=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.......+\frac{1}{\sqrt{100}}\)

\(=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+.......+\frac{2}{2\sqrt{100}}\)

\(< 2\left(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+.........+\sqrt{100}-\sqrt{99}\right)\)

\(=2.\sqrt{100}=20\)

\(\Rightarrow A< 20\left(đpcm\right)\)

22 tháng 4 2021

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

26 tháng 3 2017

Ta có: \(1-\dfrac{1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)

Thế vô bài toán ta được

\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{\left(n-1\right)\left(n+1\right)}{n.n}=\dfrac{1}{2}.\dfrac{n+1}{n}\)

Ta thấy

\(\dfrac{1}{2}.\dfrac{n}{n}< \dfrac{1}{2}.\dfrac{n+1}{n}< \dfrac{1}{2}.\dfrac{n+n}{n}\)

\(\Rightarrow\dfrac{1}{2}< \dfrac{1}{2}.\dfrac{n+1}{n}< 1\)

\(\Rightarrow\)ĐPCM

9 tháng 2 2018

Ta có:

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=1\)

\(\Leftrightarrow ab+bc+ca\le\frac{1}{3}< \frac{1}{2}\)

9 tháng 2 2018

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}\)

\(< 1\)