\(\frac{18n+5}{29n+8}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2015

a)Gọi ƯCLN(18n+5;29n+8)=d

Ta có: 18n+5 chia hết cho d

=>29(18n+5) chia hết cho d

522n+145 chia hết cho d

có 29n+8 chia hết cho d

=>18(29n+8) chia hết cho d

522n+144 chia hết cho d

=>522n+145-(522n+144) chia hết cho d

=>1 chia hết cho d hay d=1

=>ƯCLN(18n+5;29n+8)=1

=>đpcm

b)tương tự, bạn tìm bội chung nhỏ nhất rồi chia là ra

21 tháng 11 2016

b/ Đề sửa lại là: \(\frac{8n+15}{12n+22}\)

Gọi gọi d là  UCLN[(8n + 15);(12n + 22)]

Ta có 3(8n + 15) = 24n + 45 chia hết cho d

2(12n + 22) = 24n + 44 chia hết cho d

=> 24n + 45 - 24n - 44 = 1 chia hết cho d

=> d = 1

Vậy phân thức ban đầu là tối giản

21 tháng 11 2016

Mình ko biết nha 

Nhớ k cho mình nhé

Chúc các bạn học giỏi

7 tháng 2 2020

Giả sử: \(\left(10n^2+9n+4,20n^2+20n+9\right)=d\)

\(\Rightarrow\left(20n^2+20n+9\right)-2\left(10n^2+9n+4\right)⋮d\)

\(\Rightarrow2n+1⋮d\left(1\right)\)

Ta có: \(10n^2+9n+4=\left(2n+1\right)\left(5n+2\right)+2\)

Mà: \(10n^2+9n+4⋮d\Rightarrow\left(2n+1\right)\left(5n+2\right)+2⋮d\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow2⋮d\Rightarrow2n⋮d\)

Từ: \(\left(1\right)\left(3\right)\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ......

4 tháng 11 2018

Đặt \(A=\frac{n^3-1}{n^5+n+1}\)

\(A=\frac{n^3-1^3}{n^5-n^2+n^2+n+1}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left[n^2\left(n-1\right)+1\right]}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left(n^3-n^2+1\right)}\)

\(A=\frac{n-1}{n^3-n^2+1}\)

Dễ thấy n - 1 < n3 - 1; n3 - n2 + 1 < n5 + n + 1

Mà \(\frac{n^3-1}{n^5+n+1}=\frac{n-1}{n^3-n^2+1}\)

=> A có thể rút gọn 

=> A chưa tối giản ( đpcm )

29 tháng 1 2015

Gọi UCLN của chúng là d rồi khử n là tìm được d=1 or d=-1 

8 tháng 2 2015

a/rút gọn n ta còn 3+1/5+10=4/15(tối giản suy ra đpcm)

b/tương tự như câu a nhưng thay số 

c/rút gọn n còn 3+2/4+3^2+1=5/14( tối giản suy ra đpcm)

d/rút gọn n ta còn 2+1/2^2-1=3/3=1/1(tối giản suy ra đpcm)

Tèn ten xong nhưng ko bik đúng hay sai nha!!!!!!!!!!!!!!!!!!!!!!!!!!!

10 tháng 2 2021

Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)

=> P/s tối giản

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)

Từ \(\left(1\right)\)\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Rightarrow n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow n^4+2n^2+1⋮d\)

\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))

Vì \(d>0\)\(\Rightarrow d=1\)

\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên