Với n là số tự nhiên, chứng minh : n.(n + 8). (n + 13) chia hết cho 3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

- Nếu n chia hết cho 3 thì n( n + 8 ) ( n + 13 ) cũng chia hết cho 3

- Nếu n chia 3 dư 1 thì n + 8 chia 3 hết cho 3 

=> n ( n + 8 ) ( n + 13 ) chia hết cho 3

- Nếu n chia 3 dư 2 thì n + 13 chia hết cho 3

=> n ( n + 8 ) ( n + 13 ) chia hết cho 3

Vậy n ( n + 18 ) ( n + 13 ) chia hết cho mọi 3 với n là số tự nhiên.

5 tháng 10 2021

mình đang cần gấp

22 tháng 7 2021

Gọi (n + 3,n + 2) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> (n + 3, n + 2) = 1 

=> ĐPCM

b) Gọi (2n + 3; 4n + 8) = d 

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)

Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)\(\forall n\)

=> d = 2 loại

=> d = 1

=> ĐPCM 

9 tháng 7 2015

10a+b chia hết cho 13

=> 40a +4b-49a chia hết cho 13

hay a+4b chí hết cho 13

4 tháng 8 2016

ertttrtrg

24 tháng 10 2016

a) tổng S bằng

(2014+4).671:2=677 039

b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n

→2n.(n+2013)\(⋮̸\)2

C)M=2+22+23+...+220

=(2+22+23+24)+...+(217+218+219+220)

=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)

=30.1+...+216.(2+22+23+24)

=30.1+...+216.30

=30(1+25+29+213+216)\(⋮\)5

 

 

23 tháng 10 2016

c, M= 2 + 22 + 23 +........220

Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5

Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)

= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )

= 30+24 .30 + 28. 30 +.........+ 216.30

= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5

Vậy M chia hết cho 5

a: \(M=3\left(1+3^2+3^4\right)+...+3^{95}\left(1+3^2+3^4\right)\)

\(=273\left(1+...+3^{95}\right)⋮13\)

b: \(9M=3^3+3^5+...+3^{101}\)

\(\Leftrightarrow8M=3^{101}-3\)

\(\Leftrightarrow M=\dfrac{3^{101}-3}{8}\)

\(2M+3=\dfrac{3^{101}-3}{4}+3=\dfrac{3^{101}-3+12}{4}=\dfrac{3^{101}+9}{4}\)

22 tháng 10 2016

n.(n+8)(n+13)

n[((n+1)+1)][(n+2)+11]

[n(n+1)+n][(n+2)+11]

n(n+1)(n+2)+11n(n+1)+n(n+2)

n(n+1)(n+2)+n[11(n+1)+n+2)

n(n+1)(n+2)+3n(4n+13)

ba số tn liên tiêp có một số chia hết cho 3 =>chia hết cho 3

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...