Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhầm rồi bạn ơi n là số tự nhiên chẵn mà nên tất nhiên sẽ bao gồm cả số 2
Ta có 323=17.19
+Chứng minh A⋮17
Thật vậy A=20n+16n−3n−1 = (16^n-1)+ (20^n-3^n)
Nhận xét⎨(16n−1)⋮17 (20n−3n)⋮17
⇒A⋮17 (1)
+Chứng minh A⋮19A⋮19
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16^n+3^n)+ (20^n-1)
Nhận xét ⎨(16n+3n)⋮19 (20n−1)⋮19
⇒A⋮19 (2)
Mà (17;19)=1(17;19)=1
Từ (1) và (2)⇒A⋮BCNN(17.19)
hay A⋮323 (đpcm)
Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)
Đặt \(n^2+3=t\)
=> \(A=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
=> A là số chính phương
Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
Ta có: 323=17.19 và 20n+16n-3n-1
(20n-10)+(16n-3n) chia hết ho 19 (1)
( vì 20n-1 chia hết cho 20-1=19) và 16n-3n chia hết cho 19 vì n chẵn
Vậy 20n+16n-3n-1 = ( 20n-3n)+(16n-1) chia hết cho 17 (2)
Từ (1) và (2) và ƯCLN(17, 19)=1 suy ra :
(20n+16n-3n-1) chia hết cho 323
Ta thấy :
323=17.19 và (17;19)=1 nên ta cần chứng minh
\(20^n-1+16^n-3^n⋮17\) và \(19\)