Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
\(P=\frac{n-7+9}{n-7}=1+\frac{9}{n-7}\)
\(\left(\text{Để P}\right)max\Rightarrow\left(\frac{9}{n-7}\right)max\Rightarrow\left(n-7\right)min\text{ và }n-7>0\left(\text{vì }9>0\right)\)
n-7 min và n-7>0 => n-7=1 => n=8. Vậy MaxP=10
\(\hept{\begin{cases}b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\\c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\end{cases}}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)
áp dụng t.c dtsbn:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)
1/ Ta có: \(P=\frac{2}{6-m}\)\(\le2\left(\forall m\in Z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow6-m=1\Rightarrow m=5\).
Vậy Max P =2 khi m = 5.
2/ Ta có: \(Q=\frac{8-n}{n-3}\ge0\left(\forall n\in Z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow8-n=0\Rightarrow n=8.\)
Vậy Min Q = 0 khi n = 8.
Chúc bn hc tốt!^_^.
Nhớ kb và cho tớ nhé mọi người!
1/ta có :2/6-m max
suy ra:6-m>0,6-m min
suy ra:6-m=1
suy ra: m=5
Vậy ...
Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)
Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)
và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)
=>n - 2009 = 1 =>n = 2010
Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)
Vậy giá trị lớn nhất của A là 2011 khi n=2010
Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)
Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)
Ta có bảng sau:
n + 3 | 9 | -9 | 3 | -3 | 1 | -1 |
n | 6 | -12 | 0 | -6 | -2 | -4 |
a) P có giá trị lớn nhất <=> 6 - m là số nguyên dương nhỏ nhất => 6 - m = 1 => m = 6 - 1 = 5
Vậy....
b) \(Q=\frac{-\left(n-3\right)+5}{n-3}=-1+\frac{5}{n-3}\)
Để Q nhỏ nhất thì \(\frac{5}{n-3}\) nhỏ nhất <=> n - 3 là số nguyên âm lớn nhất <=> n - 3 = -1 <=> n = -1 + 3 = 2
Vậy.....
a, P có GTLN=> 6-m là số nguyên dương nhỏ nhất =>6-m=1=>m=6-1=5
Vậy m=5
b,\(Q=\frac{-\left(n-3\right)+5}{n-3}=-1+\frac{5}{n-3}\)
Để Q nhỏ nhất thì \(\frac{5}{n-3}\)nhỏ nhất => n-3 là số nguyên âm lớn nhất => n-3=-1=> n=-1+3+2
Vậy n = 2