\(a^2+5b^2-4ab+2a-6b+3>0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2019

\(VT=a^2+4b^2+1-4ab+2a-4b+b^2-2b+1+1\)

\(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1>0\) (đpcm)

2 tháng 8 2016

\(a^2+5b^2-4ab+2a-6b+3\)

\(=a^2-4ab+2a+5b^2-6b+3\)

\(=a^2-2a\left(2b-1\right)+5b^2-6b+3\)

\(=a^2-2.a.\frac{2b-1}{2}+\left(\frac{2b-1}{2}\right)^2+5b^2-6b-\left(\frac{2b-1}{2}\right)^2+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{\left(2b-1\right)^2}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{4b^2-4b+1}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-b^2+b-\frac{1}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+4b^2-5b+\frac{11}{4}\)

\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b\right)^2-2.2b.\frac{5}{4}+\frac{25}{16}+\frac{19}{16}\)

\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\)

\(\left(a-\frac{2b-1}{2}\right)^2\ge0;\left(2b-\frac{5}{4}\right)^2\ge0=>\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\ge\frac{19}{16}>0\) (với mọi a,b)  (đpcm)

24 tháng 11 2019

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

24 tháng 11 2019

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm

11 tháng 10 2017

\(a^2+5b^2-4ab+2a-6b+3\)

\(=\left(a^2-4ab+4b^2\right)+\left(2a-4b\right)+1+\left(b^2-2b+1\right)+1\)

\(=\left(a-2b\right)^2+2\left(a-2b\right)+1+\left(b^2-2b+1\right)+1\)

\(=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1\forall a;b\)

Mà \(1>0\) nên \(a^2+5b^2-4ab+2a-6b+3>0\forall a;b\)(đpcm)

7 tháng 3 2020

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(LĐ\right)\)

NV
22 tháng 4 2019

\(VT=a^2+b^2+1-2ab+2a-2b+b^2-2b+1\)

\(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\) (đpcm)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\)

7 tháng 3 2020

(a + b)^2 > 4ab

<=> a^2 + 2ab + b^2 > 4ab

<=> a^2 - 2ab + b^2 > 0

<=> (a - b)^2 > 0 (đúng)

7 tháng 3 2020

Áp dụng bđt cô - si cho 2 số không âm:

\(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b\right)^2\ge4a\)

Dấu "=" khi a = b