\(2^{5n+3}+5^n.3^{n+1}\) chia hết cho 17...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

Sửa đề thành: \(2^{5n+3}+5^n.3^{n+2}\) mới đúng bạn nhé.

Ta có:

\(2^{5n+3}+5^n.3^{n+2}=8.2^{5n}+5^n.3^n.9\)

\(=8.32^n+9.15^n\)

Thấy rằng: \(32\equiv 15\pmod {17}\Rightarrow 8.32^n\equiv 8.15^n\pmod {17}\)

\(\Rightarrow 8.32^n+9.15^n\equiv 8.15^n+9.15^n\equiv 17.15^n\equiv 0\pmod {17}\)

Tức là: \(2^{5n+3}+5^n.3^{n+2}=8.32^n+9.15^n\vdots 17\) với mọi số $n$ không âm.

17 tháng 7 2018

cách khác :

+ nếu \(n=1\) ta có : \(2^{5n+3}+5^n.3^{n+2}=391⋮17\)

+ giả sử \(n=k\) thì \(2^{5k+3}+5^k.3^{k+2}⋮17\)

khi đó nếu \(n=k+1\) \(\Rightarrow2^{5n+3}+5^n.3^{n+2}=2^{5\left(k+1\right)+3}+5^{k+1}.3^{k+1+2}\)

\(=2^{5k+3+5}+5^{k+1}.3^{k+2+1}=2^{5k+3}.2^5+5^k.3^{k+2}.5.3\)

\(=15\left(2^{5k+3}+5^k+3^{k+2}\right)+17.2^{5k+3}⋮17\)

\(\Rightarrow\left(đpcm\right)\)

20 tháng 4 2017

Bài giải:

Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22

= (5n + 2 - 2)(5n + 2 + 2)

= 5n(5n + 4)

Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.

9 tháng 10 2017

\((5n + 2)^2 - 4\) \(= (5n +2 )^2 - 2^2\)

\(= (5n +2 - 2) (5n + 2 + 2 )\)

\(= 5n(5n + 4)\)

\(\Rightarrow\) \(5\) \(⋮\) \(5\) nên \(5n(5n +4)\) \(⋮\) \(5\) với mọi số nguyên thuộc \(n\)

Vậy biểu thức \((5n + 2)^2 - 4\) chia hết cho \(5\) với mọi số nguyên thuộc \(n\)

27 tháng 8 2016

Ta có : \(\left(5n+2\right)^2-4\)

         \(=\left(5n+2-2\right).\left(5n+2+2\right)\)

         \(=5n\left(5n+4\right)\)

Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)

 

27 tháng 8 2016

(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4 
= 25n^2 + 20n = 5n(5n + 4) 

--> (52+2)^2 - 4 = 5n(5n + 4) 
Mà 5 chia hết cho 5 
-->5n(5n + 4) chia hết cho 5

24 tháng 7 2019

undefined

5 tháng 7 2016

xem lại câu a nhé bạn

20 tháng 10 2019

a, (n+3)2-(n-1)2

= n2+6n+9-n2+2n-1

= 8n + 8

= 8(n+1) chia hết cho 8

15 tháng 10 2017

Trước tiên bn nên phân tích đa thức thành nhân tử để dễ dàng chứng minh hơn

Ta có: \(A=5n^3+15n^2+10n=5n^3+5n^2+10n^2+10n\)\(=5n^2\left(n+1\right)+10n\left(n+1\right)=\left(n+1\right)\left(5n^2+10n\right)\)\(=5.n\left(n+1\right)\left(n+2\right)\)

Do \(n\left(n+1\right)\left(n+2\right)⋮6\) \((\forall n\in Z)\) (bn tự cm)

\(\Rightarrow A\) \(⋮30\left(\forall n\in Z\right)\)

16 tháng 10 2017

thiếu nhé

vì UCLN(5,6)=1 nên A chia hết cho 5.6=30