Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
1. Với D là biến đếm, ta có quy trình bấm phím liên tục:
D=D+1:A=DxB-C-D:C=B:B=A
CALC giá trị C=1; B=2; D=2 bấm "=" liên tục
Kết quả: x12 = 5245546; x13 = 67751587; x14 = 943276658
2. Dùng máy tính tính được x=27; y=11; z=19 => A=?
Vì \(x_1,x_2,x_3,....,x_n>0\)nên ta áp dụng bất đẳng thức Cosi, được :
\(1+x_1\ge2\sqrt{x_1}\)(1)
\(1+x_2\ge2\sqrt{x_2}\)(2)
.............................
\(1+x_n\ge2\sqrt{x_n}\)(n)
Nhân n bất đẳng thức trên theo vế, được :
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_n\right)\ge2^n.\sqrt{x_1.x_2...x_n}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow x_1=x_2=x_3=...=x_n=1\)(thoả mãn điều kiện)
Vậy nghiệm nguyên dương của phương trình : \(x_1=x_2=...=x_n=1\)
Đáp án của bạn ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị