Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BPT <=> a^2 + b^2 + c^2 - ab - bc - ca >=0
=> 2 (a^2 + b^2 + c^2 - ab - bc -ca)>=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc- 2ac >=0
=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac +a^2 >0
=> ( a - b)^2 + ( b- c)^2 + ( c-a)^2 >0
Luôn đúng
Dấu '=' xảy ra khi a = b= c
Câu a bạn chứng minh được rồi là xong nha !!!!!!!
Câu b)
\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)
\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được:
=> \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)
=> \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
DẤU "=" Xảy ra <=> \(a=b=c\)
Vậy ta có ĐPCM !!!!!!!!
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
Cần CM :\(a^2+b^2+c^2-ab-bc-ca\)>=0
<=>\(2\cdot a^2+2\cdot b^2+2\cdot c^2-2ab-2bc-2ca\)>=0(1)
ta có \(2a^2+2b^2+2c^2-2ab-2bc-2ca\)=\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)
=\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2>=0\) =>(1) (luôn đúng)
vậy suy ra đpcm
Dấu = khi a=b=c
Ta có ( a - b - c )2 >= 0
= ( a-b )2 - 2(a-b)c + c2 >= 0
= a2 - 2ab + b2 - 2ac + 2bc + c2 >= 0
= a2 + b2 + c2 - 2 ( ab - bc + ac ) >=0 (dpcm)
\(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
<=> 2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ac\(\ge\)0
<=> (\(a^2\)-2ab+\(b^2\)) +(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0
<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0
vì \(\left(a-b\right)^2\)\(\ge\)0
\(\left(b-c\right)^2\)\(\ge\)0
\(\left(c-a\right)^2\)\(\ge\)0
<=>\(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0
vậy\(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
dấu = xảy ra khi
a-b=0=>a=b
b-c=0=> b=c
c-a=0=> c=a
=> a=b=c
giả sử \(a^2+b^2+c^2\le ab+ac+bc\)
suy ra \(2\left(a^2+b^2+c^2\right)\le2\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+b^2+a^2+c^2+b^2+c^2\le2ab+\\ 2ac+2bc\) (1)
ta có \(\left(a+b\right)^2\ge0\Leftrightarrow a^2+2ab+b^2\ge0\\ \Rightarrow a^2+b^2\ge2ab\) (2)
tương tự ta cũng có\(a^2+c^2\ge2ac\\ b^2+c^2\ge2bc\) (3)
từ (2) và (3) suy ra hệ thức (1) vô lí
suy ra \(a^2+b^2+c^2\ge ab+ac+bc\) với mọi a;b;c
Theo BĐT Cô-si, ta có:\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)
Cộng từng vế của các BĐT vs nhau, ta dược:\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\left(dfcm\right)\)