Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
702a +105b + 801c = 3.234a + 3.35b + 3.267c = 3. ( 234a + 35b +267c ) Vì 3. (234a +35b + 267c ) được viết dưới dạng 3k Vậy 702a +105b+801c chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) tổng S bằng
(2014+4).671:2=677 039
b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n
→2n.(n+2013)\(⋮̸\)2
C)M=2+22+23+...+220
=(2+22+23+24)+...+(217+218+219+220)
=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)
=30.1+...+216.(2+22+23+24)
=30.1+...+216.30
=30(1+25+29+213+216)\(⋮\)5
c, M= 2 + 22 + 23 +........220
Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5
Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)
= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )
= 30+24 .30 + 28. 30 +.........+ 216.30
= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5
Vậy M chia hết cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)
\(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\)
\(\Rightarrow3^{4n+1}+2\equiv5\left(mod5\right)\)
\(\Rightarrow3^{4n+1}+2⋮5\)
Vậy\(3^{4n+1}+2⋮5\)
b)Ta có\(2^4\equiv1\left(mod5\right)\Rightarrow2^{4n}\equiv1\left(mod5\right)\Rightarrow2^{4n+1}\equiv2\left(mod5\right)\)
\(\Rightarrow2^{4n+1}+3\equiv5\left(mod5\right)\Rightarrow2^{4n+1}+3⋮5\)
Vậy\(2^{4n+1}+3⋮5\)
c)Ta có\(9^2\equiv1\left(mod10\right)\Rightarrow9^{2n}\equiv1\left(mod10\right)\)
\(\Rightarrow9^{2n+1}\equiv9\left(mod10\right)\Rightarrow9^{2n+1}+1\equiv10\left(mod10\right)\)
\(\Rightarrow9^{2n+1}+1⋮10\)
Vậy\(9^{2n+1}+1⋮10\)
a) 34n + 1 + 2
=(34)n x 3 + 2
= 81n x 3 + 2
= ...1 x 3 + 2
= ...5 chia hết cho 5
b) 24n+1 + 3
= (24)n x 2 + 3
= 16n x 2 + 3
= ...6 x 2 + 3
= ...5 chia hết cho 5
c) 92n + 1 + 1
= (92)n x 9 + 1
= 81n x 9 + 1
=...1 x 9 + 1
= ...0 chia hết cho 10
![](https://rs.olm.vn/images/avt/0.png?1311)
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có \(\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\) Khi đồng thời chia hết cho 2 và 3
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là tích của 3 số tự nhiên liên tiếp nên có ít nhất 1 thừa số là chẵn \(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\forall n\)
+ Nếu \(n⋮3\Rightarrow n+3⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
+ Nếu n chia 3 dư 1 \(\Rightarrow n+2⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
+ Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\forall n\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\forall n\)
b/
\(\overline{x375y}⋮45\) khi đồng thời chia hết cho 5 và 9
\(\overline{x375y}⋮9\Rightarrow x+3+7+5+y=15+x+y⋮9\Rightarrow x+y=\left\{3;12\right\}\)
\(\overline{x375y}⋮5\Rightarrow y=\left\{0;5\right\}\)
+ Với \(y=0\Rightarrow x=3\Rightarrow\overline{x375y}=33750\)
+ Với \(y=5\Rightarrow x=7\Rightarrow\overline{x375y}=73755\)
c/
\(\frac{6x+45}{2x+3}=\frac{6x+9+36}{2x+3}=\frac{3\left(2x+3\right)+36}{2x+3}=3+\frac{36}{2x+3}\left(x\ne-\frac{3}{2}\right)\)
\(6x+45⋮2x+3\) khi \(36⋮2x+3\) hay 2x+3 là ước của 36
(tiếp)
\(\Rightarrow2x+3=\left\{-36;-18;-12;-9;-6;-4;-3-2;-1;1;2;4;6;9;12;18;36\right\}\)
Từ đó tìm ra x tương ứng
Ta có 702a+105b+801c = 3.234a+3.35b+3.267c
=3.(234a+35b+267c) chia hết cho 3 (ĐPCM)