K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

a)\(\frac{-1}{4x+2}< 0\)

\(\Leftrightarrow4x+2>0\)

\(\Leftrightarrow4x>-2\)

\(\Leftrightarrow x>\frac{-1}{2}\)

Vậy ...

b)\(\frac{-x^2-2x-3}{x^2+1}\)

Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)

Vì \(-\left(x+1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)

Lại có \(x^2\ge0;\forall x\)

\(\Rightarrow x^2+1\ge1>0;\forall x\)

\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)

30 tháng 8 2015

=> ( x + 1 ) ( x^2 - 4x + 4 ) + x^2 ( 4 -x ) = 13 

=> x^3 - 4x^2 + 4x + x^2 - 4x + 4 + 4x^2 - x^3 = 13

=> 0x + 4 = 13 

=> 0x = 9 ( loại )

=> ko có x 

5 ) > 

7 tháng 9 2019

a) \(\left(x+a\right)\left(x^2+bx+16\right)\)

\(=x\left(x^2+bx+16\right)+a\left(x^2+bx+16\right)\)

\(=x^3+bx^2+16x+ax^2+abx+16a\)

\(=x^3+\left(a+b\right)x^2+\left(16+ab\right)x+16a\)

b) Ta có: \(\hept{\begin{cases}M=x^3+\left(a+b\right)x^2+\left(16+ab\right)x+16a\\N=x^3-64\end{cases}}\)

Cân bằng hệ số: \(\hept{\begin{cases}a+b=0\\16+ab=0\\16a=-64\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-4\\4\end{cases}}\)

5 tháng 7 2018

a/ Ta có \(A=\frac{x-2}{x+2}\)

\(A=\frac{x+2-4}{x+2}\)

\(A=1-\frac{4}{x+2}\)

Để A > 1

<=> \(1-\frac{4}{x+2}>1\)

<=> \(\frac{4}{x+2}>0\)

<=> \(4>x+2\)

<=> \(2>x\)

<=> \(x< 2\)

Bạn coi lại đáp án câu a/ nha bạn. Mình ra là \(x< 2\).

b/ Để \(A\inℤ\)

<=> \(1-\frac{4}{x+2}\inℤ\)

Mà \(1\inℤ\)

<=> \(-\frac{4}{x+2}\inℤ\)

<=> \(\left(-4\right)⋮\left(x+2\right)\)

<=> \(x+2\in\)Ư (4)

Đến đây bạn giải quyết phần còn lại nhen. Mình lười lắm.

5 tháng 7 2018

b) Để A có giá trị là số nguyên 

Thì (x—2) chia hết cho (x+2)

==> (x+2–4) chia hết cho (x+2)

Vì (x+2) chia hết cho (x+2)

Nên (—4) chia hết cho (x+2)

==> x+2 € Ư(4)

==> x+2 €{1;—1;2;—2;4;—4}

TH1: x+2=1

x=1–2

x=—1

TH2: x+2=—1

x=—1–2

x=—3

TH3: x+2=2

x=2–2

x=0

TH4: x+2=—2

x=—2–2

Xa=—4

TH5: x+2=4

x=4–2

x=2

TH6: x+2=—4

x=—4–2

x=—6

Vậy x€{—1;—3;0;—4;2;—6}

4 tháng 8 2021

sửa +1 thành -1

Ta có : -x2 + x - 1 = -( x2 - x + 1/4 ) - 3/4 = -( x - 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x

vậy ta có đpcm 

4 tháng 8 2021

Ta có :

-x2 + x + 1 = -( x - 1/2 )2 - 5/4 < 0 , với mọi giá trị của x

1 tháng 5 2020

Ta có :

2x4 + 1 - 2x3 - x2 

= 2x3 ( x - 1 ) - ( x - 1 ) ( x + 1 )

= ( x - 1 ) ( 2x3 - x - 1 )

= ( x - 1 ) [ ( x3 - x ) + ( x3 - 1 ) ]

= ( x - 1 ) [ x ( x - 1 ) ( x + 1 ) + ( x - 1 ) ( x2 + x + 1 ) ]

= ( x - 1 )2 ( x2 + x + x2 + x + 1 )

= ( x - 1 )2 ( 2x2 + 2x + 1 )

= ( x - 1 )2 ( x2  + ( x + 1 )2 ) \(\ge\)0

Suy ra đpcm