K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có ; \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu được cm.

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

10 tháng 9 2016

ta áp dụng cô-si la ra 
a2+b2+c2 ≥ ab+ac+bc 
̣̣(a - b)2 ≥ 0 => a2 + b2 ≥ 2ab (1) 
(b - c)2 ≥ 0 => b2 + c2 ≥ 2bc (2) 
(a - c)2 ≥ 0 => a2 + c2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a2 + b2 + c2) ≥ 2(ab+ac+bc) 
=> a2 + b2 + c2 ≥ ab+ac+bc 
dấu = khi : a = b = c

10 tháng 9 2016

Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0..\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0..\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge\left(ab+bc+ca\right)\)

1 tháng 1 2019

Đặt \(ab=x\)\(bc=y\);\(ac=z\)

\(BPT< =>\left(x+y+z\right)^2\ge3\left(xz+xy+yz\right)\)

\(< =>x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\)

\(< =>x^2+y^2+z^2-xy-xz-yz\ge0\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(LĐ\right)\)

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

5 tháng 10 2018

\(a>0;b>0;c>0\Rightarrow\dfrac{ab}{c}>0;\dfrac{bc}{a}>0;\dfrac{ac}{b}>0\)

Áp dụng bất đẳng thắng Cosi cho các cặp:

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{bc}{a}}\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ac}{b}}\Leftrightarrow\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\)

\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{ac}{b}}\Leftrightarrow\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\)

\(\Rightarrow2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\left(dpcm\right)\)

\("="\Leftrightarrow a=b=c\)

5 tháng 10 2018

trong câu hỏi tương tự cũng có mà

23 tháng 9 2019

Áp dụng BĐT AM - GM cho 2 số dương:

 \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{ab}{abc^2}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{bc}{a^2bc}}=\frac{2}{a}\)

\(\frac{a}{bc}+\frac{c}{ab}\ge2\sqrt{\frac{ac}{ab^2c}}=\frac{2}{b}\)

Cộng từng vế của các BĐT trên. ta được:

\(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(đpcm\right)\)

cho a,b,c>0.

Chứng minh a/ bc + b/ac + c/ab > =2(1/a +1/b - 1/c)

.

19 tháng 10 2020

Cái này là công thức hàm số cos nha 

Hàm số cos theo em tới lớp 11 12 luôn nha ( bài tập vật lí 11 12 ) 

Lên lớp 10 sẽ học 

Còn chứng minh quên rồi 

19 tháng 10 2020

Cái này được suy ra từ định lí hàm số cos:

trong \(\Delta ABC\)thì \(b^2=a^2+c^2-2ac.\cos B\)

Với \(\Delta ABC\)có góc \(B\)tù thì   \(\cos B=-\cos\left(180-\widehat{B}\right)\)

nên khi đó ta có thể viết lại:

 \(b^2=a^2+c^2-2ac\left[-\cos\left(180-\widehat{B}\right)\right]\)\(\Rightarrow b^2=a^2+c^2+2ac.\cos\left(180^o-\widehat{B}\right)\)