\(\dfrac{\sqrt{x}}{\sqrt{x}+1}\). So sánh biểu thức M với \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

c: Để \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) là số nguyên thì \(\sqrt{x}+1-2⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1\in\left\{1;2\right\}\)

=>x=0

NV
31 tháng 1 2019

\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+8}{\sqrt{x}-3}\)

Do \(A>0\) \(\forall x\ge0\Rightarrow\)để P xác định thì \(B\ge0\Rightarrow x>9\)

\(\Rightarrow P=\sqrt{\dfrac{\sqrt{x}+8}{\sqrt{x}-3}.\dfrac{x+7}{\sqrt{x}+8}}=\sqrt{\dfrac{x+7}{\sqrt{x}-3}}=\sqrt{\sqrt{x}+3+\dfrac{16}{\sqrt{x}-3}}\)

\(\Rightarrow P=\sqrt{\sqrt{x}-3+\dfrac{16}{\sqrt{x}-3}+6}\ge\sqrt{2\sqrt{\dfrac{16\left(\sqrt{x}-3\right)}{\sqrt{x}-3}}+6}=\sqrt{14}\)

\(\Rightarrow P_{min}=\sqrt{14}\) khi \(x=49\)

6 tháng 10 2018

1) H nhận giá trị nguyên => 3H nhận giá trị nguyên

Ta có: \(3H=\dfrac{3\sqrt{x}-9}{3\sqrt{x}+5}=\dfrac{3\sqrt{x}+5}{3\sqrt{x}+5}-\dfrac{14}{3\sqrt{x}+5}=3-\dfrac{14}{3\sqrt{x}+5}\)

3H nguyên <=> \(\dfrac{14}{3\sqrt{x}+5}\) nhận giá trị nguyên

<=> \(3\sqrt{x}+5\inƯ\left(14\right)\)

\(3\sqrt{x}+5\ge5;3\sqrt{x}+5\ne8\)

=> \(3\sqrt{x}+5\in\left\{7;14\right\}\Leftrightarrow3\sqrt{x}\in\left\{2;9\right\}\Leftrightarrow\sqrt{x}\in\left\{\dfrac{2}{3};3\right\}\Leftrightarrow x\in\left\{\dfrac{4}{9};9\right\}\)

Lại có \(x\in Z\) => x = 9

Thử lại: với x = 9 thì \(H=\dfrac{\sqrt{9}-3}{3\sqrt{9}+5}=0\left(TM\right)\)

Vậy...

Câu còn lại tương tự

5 tháng 10 2018

T cũng có làm được đâu :>>>

NV
9 tháng 7 2019

\(\left[\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}\right]\left[\frac{1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right]^2=\left(x+\sqrt{x}+1\right)\frac{1}{\left(1+\sqrt{x}\right)^2}=\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}\)

Đề bài sai

\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)

\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)

Do \(\sqrt{2012}>\sqrt{2010}\) \(\Rightarrow\sqrt{2012}+\sqrt{2011}>\sqrt{2011}+\sqrt{2010}>0\)

\(\Rightarrow\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\Rightarrow\sqrt{2012}-\sqrt{2011}< \sqrt{2011}-\sqrt{2010}\)

\(A=\frac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}-2\sqrt{y}\)

\(M^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\le2\left(x-1+9-x\right)=16\)

\(\Rightarrow M\le4\Rightarrow M_{max}=4\) khi \(x-1=9-x\Leftrightarrow x=5\)

9 tháng 7 2019

đề câu a) là

\(\left[\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right].\left[\frac{1-\sqrt{x}}{1-x}\right]^2\)

15 tháng 1 2019

1) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-9\ne0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}=\dfrac{3\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}\)2) Để A=\(\dfrac{5}{6}\) thì \(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}=\dfrac{5}{6}\Leftrightarrow\left(\sqrt{x}+1\right)6=\left(\sqrt{x}+3\right)5\Leftrightarrow6\sqrt{x}+6=5\sqrt{x}+15\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)

14 tháng 1 2019

1. Ta có:

\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)}{3\left(x-9\right)}+\dfrac{1}{3}\)

\(=\dfrac{2x-6\sqrt{x}}{3\left(x-9\right)}+\dfrac{x-9}{3\left(x-9\right)}\)

\(=\dfrac{3x-6\sqrt{x}-9}{3x-27}\)

\(=\dfrac{x-2\sqrt{x}-3}{x-9}\)

29 tháng 10 2020

ĐKXĐ của cả A và B : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(B=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)

\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{x-\sqrt{x}+5\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

\(M=\frac{B}{A}=\frac{\frac{\sqrt{x}-1}{\sqrt{x}-5}}{\frac{\sqrt{x}+2}{\sqrt{x}-5}}=\frac{\sqrt{x}-1}{\sqrt{x}-5}\times\frac{\sqrt{x}-5}{\sqrt{x}+2}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

ĐKXĐ của M : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(M\times\left(\sqrt{x}+2\right)\ge3x-3\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}\times\left(\sqrt{x}+2\right)\ge3x-3\)( ĐK : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\))

\(\Leftrightarrow\sqrt{x}-1\ge3x-3\)

\(\Leftrightarrow3x-\sqrt{x}-3+1\ge0\)

\(\Leftrightarrow3x-\sqrt{x}-2\ge0\)

\(\Leftrightarrow3x-3\sqrt{x}+2\sqrt{x}-2\ge0\)

\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}+2\right)\ge0\)

Dễ dàng nhận thấy \(3\sqrt{x}+2\ge2>0\forall x\ge0\)

\(\Rightarrow\sqrt{x}-1\ge0\)

\(\Leftrightarrow x\ge1\)

Kết hợp với điều kiện => Với 0 ≤ x ≤ 1 thì thỏa mãn đề bài

22 tháng 7 2017

để mk xữa đề rồi giải luôn coi có đúng o nha NGUYEN THI DIEP

xữa đề rồi giải a): \(P=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right).\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\) đk : \(\left(x\ge0;x\ne1\right)\)

\(P=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\left(1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)

\(P=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)=1-x\)

b) ta có : \(P=\sqrt{x}\Leftrightarrow1-x=\sqrt{x}\Leftrightarrow x+\sqrt{x}-1=0\)

đặc \(\sqrt{x}=a\) \(\Rightarrow\) ta có phương trình \(\Leftrightarrow a^2+a-1=0\) \(\left(đk:x\ge0\right)\)

\(\Delta=\left(1\right)^2-4.1.\left(-1\right)=1+4=5>0\)

\(\Rightarrow\) phương trình có 2 ngiệm phân biệt

\(a_1=\dfrac{-1+\sqrt{5}}{2}\) (tmđk)

\(a_2=\dfrac{-1-\sqrt{5}}{2}\) (loại)

ta có : \(\sqrt{x}=a=\dfrac{-1+\sqrt{5}}{2}\Rightarrow x=\left(\dfrac{-1+\sqrt{5}}{2}\right)^2=\dfrac{3-\sqrt{5}}{2}\)

vậy \(x=\dfrac{3-\sqrt{5}}{2}\) thì \(P=\sqrt{x}\)

22 tháng 7 2017

đề sai rồi bn NGUYEN THI DIEP

1 tháng 3 2018

1) \(M=\dfrac{10}{\sqrt{x}+2};M_{\left(16\right)}=\dfrac{10}{\sqrt{16}+2}=\dfrac{10}{6}=\dfrac{5}{3}\)

2)\(N=\dfrac{2\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-18}{x-4}=2+\dfrac{4}{\sqrt{x}-2}+\dfrac{\sqrt{x}-18}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=2+\dfrac{4\sqrt{x}+8+\sqrt{x}-18}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(N=2+\dfrac{5}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+9}{\sqrt{x}+2}\)

N khác 0 mọi x thuộc đk

\(\dfrac{M}{N}=M.\dfrac{1}{N}=\dfrac{10}{\sqrt{x}+2}.\dfrac{\sqrt{x}+2}{\left(2\sqrt{x}+9\right)}=\dfrac{10}{2\sqrt{x}+9}\)

\(\dfrac{M}{N}=\dfrac{12-\sqrt{x}}{13}=\dfrac{10}{2\sqrt{x}+9}\)

\(\Leftrightarrow\left(12-\sqrt{x}\right)\left(2\sqrt{x}+9\right)=130\)

\(15\sqrt{x}+12.9-2x=130\)

\(2x-15\sqrt{x}+22=0\)

\(\Delta_{\sqrt{x}}=15^2-4.2.22=137\)

\(\sqrt{x}=\dfrac{15+-\sqrt{137}}{4}\)

\(\left[{}\begin{matrix}x_1=\dfrac{181-15.\sqrt{137}}{8}\\x_2=\dfrac{181+15.\sqrt{137}}{8}\end{matrix}\right.\) tự kiểm tra số liểu (nhẩm tính có thể nhầm; thấy lẻ quá)

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)