\(x^2+\left(3-m\right)x-m-1=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(3-m\right)^2-4\left(-m-1\right)\)

\(=m^2-6m+9+4m+4=m^2-2m+13\)

\(=\left(m-1\right)^2+12>0\)

Vậy: Phương trình không thể có nghiệm kép

18 tháng 10 2019

a) pt có nghiệm kép \(\Leftrightarrow\)\(\Delta=45-12m=0\)\(\Leftrightarrow\)\(m=\frac{15}{4}\)

b) Viet \(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=3m-11\end{cases}}\)

\(2019=2017x_1+2018x_2=2017\left(x_1+x_2\right)+x_2=2017+x_2\)\(\Leftrightarrow\)\(x_2=2\)\(\Rightarrow\)\(x_1=-1\)

\(\Rightarrow\)\(3m-11=-2\)\(\Leftrightarrow\)\(m=3\)

13 tháng 4 2020

a) Ta có: \(\Delta=45-12m\). Để pt có nghiệm kép thì:

\(\Delta=45-12m=0\)

\(\Leftrightarrow m=\frac{15}{4}\Rightarrow x_1=x_2=\frac{1}{2}\)

b) Để pt (1) có 2 nghiệm phân biệt x1;x2 thì \(\Delta=45-12m>0\)

\(\Leftrightarrow m< \frac{15}{4}\). Theo hệ thức Vi-et x1+x2=1; x1x2=3m-11. Khi đo hệ:

\(\hept{\begin{cases}x_1+x_2=1\\2017x_1+2018x_2=2019\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=-1\\x_2=2\end{cases}}}\)

Mà ta có: x1x2=3m-11

<=> m=3 (nhận)

Vậy m=3 là giá trị cần tìm

21 tháng 3 2018

a. 5x2 + 2mx – 2m +15 =0 (1)

Ta có: Δ'=m2 – 5.(-2m +15) = m2 +10m -75

Phương trình (1) có nghiệm kép khi và chỉ khi:

Δ'= 0 ⇔ m2 + 10m – 75 = 0

Δ'm = 52 -1.(-75) = 25 +75 = 100 > 0

√(Δ'm) = √100 =10

Phương trình có 2 nghiệm phân biệt:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy m =5 hoặc m=-15 thì phương trình đã cho có nghiệm kép

b. mx2 – 4(m -1)x -8 =0 (2)

Phương trình (2) có nghiệm kép khi và chỉ khi: m≠ 0 và Δ'=0

Ta có: Δ'=[-2(m-1)]2 – m(-8)=4(m2 -2m +1) +8m

=4m2– 8m +4 +8m = 4m2 +4

Vì 4m2 +4 luôn luôn lớn hơn 0 nên Δ' không thể bằng 0 .Vậy không có giá trị nào của m để phương trình có nghiệm kép

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

21 tháng 3 2018

a. x2 – 2(m+3)x + m2+3=0 (1)

Ta có: Δ' = [-(m+3)]2 -1.(m2 +3) = m2 + 6m + 9 – m2 - 3

= 6m +6

Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

Δ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1

Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt

b. (m+1)x2+4mx+4m -1 =0 (2)

Ta có: Δ' = (2m)2 – (m +1)(4m -1) = 4m2 – 4m2 + m – 4m +1

= 1 – 3m

Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:

*m +1 ≠ 0 ⇔ m ≠ -1

và *Δ' > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3

Vậy m < 1/3 và m ≠ -1 thì phương trình đã cho có 2 nghiệm phân biệt

Nhiều thế, chắc phải đưa ra đáp thôi

7 tháng 12 2015

a) m \(\ne\)0; \(\Delta'=\left(m-1\right)^2-2m=0\Leftrightarrow m^2-4m+1=0\Leftrightarrow\left(m-2\right)^2=3\)

   =>m=2+ \(\sqrt{3}\) hoặc m=2 -\(\sqrt{3}\) (TM)

b) \(\Delta=\left(m+1\right)^2-4.3.4=0\)=>m =-1 +4\(\sqrt{3}\) hoặc m = -1 - 4\(\sqrt{3}\)

7 tháng 1 2018

(Bạn viết phương trình nhé, nó dài nên ngại viết lắm =.=) (a = 1; b' = - m - 1; c = m ^ 2) 

Xét phương trình trên có a = 1 khác 0 => Phương tình là phương trình bậc 2 một ẩn 

Để phương trình có 2 nghiệm phân biệt <=> \(\Delta'>0\)

                                                                <=> b' ^ 2 - ac > 0

                                                                <=> (- m - 1) ^ 2 - 1. m ^ 2 > 0

                                                                <=> m ^2 + 2m + 1 - m ^ 2 > 0 

                                                                <=> 2m + 1 > 0

                                                                <=> 2m > - 1

                                                                <=> m > - 0,5

Vậy để phương trrình có 2 nghiệm phân biệt thì m > - 0,5

7 tháng 1 2018

Đề phòng bạn không biết thôi nha: \(ax^2+bx+c=0\)

                                                      b = 2b'

                                      \(\Delta'=b'2-ac\)

                 \(\Delta'\)> 0 thì pt có 2 nghiệm phân biệt, = 0 thì có nghiệm kép, < 0 thì vô nghiệm, tóm lại là như\(\Delta\)thôi

7 tháng 4 2018

bạn làm được bài này chưa cho mình xin lời giải