\(\left(m-1\right)x^2+2\left(m-1\right)x+m-3=0\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2021

Ta có: $a=m-1,b'=m-1,c=m-3$

$\Delta '=b'^2-ac\\=(m-1)^2-(m-1)(m-3)\\=m^2-2m+1-(m^2-4m+3)\\=m^2-2m+1-m^2+4m-3\\=2m-2$

Vì phương trình vô nghiệm

$\Rightarrow \Delta '<0\\\Leftrightarrow 2m-2<0\\\Leftrightarrow 2m<2\\\Leftrightarrow m<1$

Vậy $m<1$

7 tháng 4 2018

bạn làm được bài này chưa cho mình xin lời giải

Nhiều thế, chắc phải đưa ra đáp thôi

21 tháng 3 2018

a. x2 – 2(m+3)x + m2+3=0 (1)

Ta có: Δ' = [-(m+3)]2 -1.(m2 +3) = m2 + 6m + 9 – m2 - 3

= 6m +6

Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

Δ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1

Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt

b. (m+1)x2+4mx+4m -1 =0 (2)

Ta có: Δ' = (2m)2 – (m +1)(4m -1) = 4m2 – 4m2 + m – 4m +1

= 1 – 3m

Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:

*m +1 ≠ 0 ⇔ m ≠ -1

và *Δ' > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3

Vậy m < 1/3 và m ≠ -1 thì phương trình đã cho có 2 nghiệm phân biệt

7 tháng 1 2018

(Bạn viết phương trình nhé, nó dài nên ngại viết lắm =.=) (a = 1; b' = - m - 1; c = m ^ 2) 

Xét phương trình trên có a = 1 khác 0 => Phương tình là phương trình bậc 2 một ẩn 

Để phương trình có 2 nghiệm phân biệt <=> \(\Delta'>0\)

                                                                <=> b' ^ 2 - ac > 0

                                                                <=> (- m - 1) ^ 2 - 1. m ^ 2 > 0

                                                                <=> m ^2 + 2m + 1 - m ^ 2 > 0 

                                                                <=> 2m + 1 > 0

                                                                <=> 2m > - 1

                                                                <=> m > - 0,5

Vậy để phương trrình có 2 nghiệm phân biệt thì m > - 0,5

7 tháng 1 2018

Đề phòng bạn không biết thôi nha: \(ax^2+bx+c=0\)

                                                      b = 2b'

                                      \(\Delta'=b'2-ac\)

                 \(\Delta'\)> 0 thì pt có 2 nghiệm phân biệt, = 0 thì có nghiệm kép, < 0 thì vô nghiệm, tóm lại là như\(\Delta\)thôi

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

14 tháng 3 2019

Tìm max chứ nhể ???

Có : \(\Delta'=m^2+m\)

Pt có 2 nghiệm  p/b thì \(\Delta'=m^2+m>0\Leftrightarrow\orbr{\begin{cases}m< -1\\m>0\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m\end{cases}}\)

Vì x1; x2 là nghiệm của pt nên \(\hept{\begin{cases}x_1^2-2mx_1-m=0\\x_2^2-2mx_2-m=0\end{cases}}\)

                                    \(\Rightarrow\hept{\begin{cases}2mx_1=x_1^2-m\\2mx_2=x_2^2-m\end{cases}}\)

Ta có : \(T=\frac{1}{x_1^2+2mx_2+11\left(m+1\right)}+\frac{1}{x_2^2+2mx_1+11\left(m+1\right)}\)

             \(=\frac{1}{x_1^2+x_2^2-m+11m+11}+\frac{1}{x_2^2+x_1^2-m+11m+11}\)

             \(=\frac{1}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}+\frac{1}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}\)

             \(=\frac{2}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}\)

             \(=\frac{2}{4m^2+2m+10m+11}\)

            \(=\frac{2}{4m^2+12m+11}\)

            \(=\frac{2}{\left(4m^2+12m+9\right)+2}\)

           \(=\frac{2}{\left(2m+3\right)^2+2}\le\frac{2}{2}=1\)

Dấu "=" khi m = -3/2 (thỏa mãn)