\(\sqrt{\frac{1}{3-2x}}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

a) \(\sqrt{\frac{1}{3-2x}}\)có nghĩa <=> \(\frac{1}{3-2x}>0\Leftrightarrow3-2x>0\Leftrightarrow x>\frac{3}{2}\)

b) \(\sqrt{\frac{x+2}{x^2+1}}\)có nghĩa <=> \(\frac{x+2}{x^2+1}\ge0\Leftrightarrow x+2\ge0\Leftrightarrow x\ge-2\)

c) \(\sqrt{\frac{x+5}{x-7}}\)có nghĩa <=> \(\frac{x+5}{x-7}\ge0\Leftrightarrow\orbr{\begin{cases}x>7\\x\le-5\end{cases}}\)

16 tháng 7 2018

Để Giá trị của x có nghĩa thì:

\(\sqrt{x^2-5x+6}>0\) => \(x^2-5x+6>0\)

Phân tích Mẫu Thức ta có:

\(\sqrt{x^2-5x+6}=\sqrt{x^2-2x-3x+6}=\sqrt{\left(x^2-2x\right)-\left(3x-6\right)}\)

\(=\sqrt[]{x\left(x-2\right)-3\left(x-2\right)}=\sqrt{\left(x-2\right)\left(x-3\right)}\) 

Để mẫu thức khác 0 thì :

\(\left(x-2\right)\ne0\) hoặc \(\left(x-3\right)\ne0\)

\(\Leftrightarrow\) \(x\ne2\)hoặc \(x\ne3\)(1)

Để mẫu thức ko âm ( lớn hơn 0 )

*Trường hợp 1: \(x-2>0\)hoặc \(x-3>0\)

=> \(x>2\)hoặc \(x>3\)(2)

*Trường hợp 2: \(x-2< 0\)hoặc \(x-3< 0\)

=> \(x< 2\)hoặc \(x< 3\)(3)

Từ (1),(2) và (3) ta có:

=> \(x>3\) hoặc \(x< 2\)

Chúc bạn học tốt :#

16 tháng 7 2018

ĐK:  \(x^2-5x+6>0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x-3\right)>0\)

TH1:  \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>2\\x>3\end{cases}}\)\(\Leftrightarrow\)\(x>3\)

TH2:   \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 2\\x< 3\end{cases}}\)\(\Leftrightarrow\)\(x< 2\)

Vậy   \(\orbr{\begin{cases}x>3\\x< 2\end{cases}}\)

30 tháng 7 2020

Vâng mình đánh nhầm đấy ạ giúp mình bài này với ạ

30 tháng 7 2020

mình sẽ xóa câu này mong bạn gửi lại câu hỏi khác để rõ ràng cho các bạn khác tham khảo nha

NV
23 tháng 9 2019

a/ \(2x^2-3x+1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)

b/ \(-3x^2+2x+1< 0\Rightarrow-\frac{1}{3}< x< 1\)

c/ \(\frac{x+3}{x-2}\ge0\Rightarrow\left[{}\begin{matrix}x>2\\x\le-3\end{matrix}\right.\)

d/ \(\frac{2x+1}{x+2}\ge1\Leftrightarrow\frac{2x+1}{x+2}-1\ge0\Leftrightarrow\frac{x-1}{x+2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)

e/ \(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\Rightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}< 0\end{matrix}\right.\) \(\Rightarrow x>4\)

g/\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\Rightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge9\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.\)

h/ \(\frac{\sqrt{x}-3}{\sqrt{x}-1}-\frac{1}{3}< 0\Rightarrow\frac{2\left(\sqrt{x}-4\right)}{3\left(\sqrt{x}-1\right)}< 0\Rightarrow1< x< 16\)

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái

8 tháng 3 2020

c/\(P=\frac{\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}}{1-\frac{x+2}{x+\sqrt{x}+1}}\)\(\Leftrightarrow P=\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}:\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

\(\Leftrightarrow\frac{2\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

Xét P-1 ta có \(\frac{2x+2\sqrt[]{x}+2-x\sqrt{x}+1}{x\sqrt{x}-1}=\frac{2x+2\sqrt{x}-x\sqrt{x}+3}{x\sqrt{x}-1}\)

với x<1 thì tử dương, mẫu âm, với x>1 thì tử âm và mẫu dương

Từ đó ta luuon có P-1\(\le0\RightarrowĐPCM\)

8 tháng 3 2020

a/\(\Leftrightarrow x=\frac{5-\sqrt{5}}{1-\sqrt{5}}+\frac{5+\sqrt{5}}{1+\sqrt{5}}-\frac{25-5}{1-5}-1\)

\(\Leftrightarrow x=0+5-1\Leftrightarrow x=4\)

Thay vào B đc \(B=\frac{4+2}{4+2+1}=\frac{6}{7}\)

b/