K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)

a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{-1}{x+2}\)

b) Khi \(\left|x\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)

c) Để P = 7

\(\Leftrightarrow-\frac{1}{x+2}=7\)

\(\Leftrightarrow7\left(x+2\right)=-1\)

\(\Leftrightarrow7x+14=-1\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\frac{15}{7}\)

Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)

d) Để \(P\inℤ\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1\right\}\)

Vậy để  \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)

18 tháng 8 2018

a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )

        \(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

         \(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

           \(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

            \(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)

b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x

                                         <=> 1-2x thuộc Ư(2) = {1;2;-1;-2}

Nếu 1-2x = 1 thì 2x = 0 => x= 0

Nếu 1-2x = 2 thì 2x = -1 => x = -1/2

Nếu 1-2x = -1 thì 2x = 2 => x =1

Nếu 1-2x = -2 thì 2x = 3 => x = 3/2

Vậy ....

19 tháng 12 2016

1)

ĐKXĐ: x\(\ne\)3

ta có :

\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)

để biểu thức A có giá trị = 1

thì :\(\frac{x-3}{2}\)=1

=>x-3 =2

=>x=5(thoả mãn điều kiện xác định)

vậy để biểu thức A có giá trị = 1 thì x=5

30 tháng 12 2016

1)

\(A=\frac{x^2-6x+9}{2x-6}\)

A xác định

\(\Leftrightarrow2x-6\ne0\)

\(\Leftrightarrow2x\ne6\)

\(\Leftrightarrow x\ne3\)

Để A = 1

\(\Leftrightarrow x^2-6x+9=2x-6\)

\(\Leftrightarrow x^2-6x-2x=-6-9\)

\(\Leftrightarrow x^2-8x=-15\)

\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)

2 tháng 7 2021

a) \(\sqrt{\frac{1}{3-2x}}\)có nghĩa <=> \(\frac{1}{3-2x}>0\Leftrightarrow3-2x>0\Leftrightarrow x>\frac{3}{2}\)

b) \(\sqrt{\frac{x+2}{x^2+1}}\)có nghĩa <=> \(\frac{x+2}{x^2+1}\ge0\Leftrightarrow x+2\ge0\Leftrightarrow x\ge-2\)

c) \(\sqrt{\frac{x+5}{x-7}}\)có nghĩa <=> \(\frac{x+5}{x-7}\ge0\Leftrightarrow\orbr{\begin{cases}x>7\\x\le-5\end{cases}}\)

28 tháng 4 2017

Câu trả lời sai là:

(C) Giá trị của Q tại \(x=3\)\(\dfrac{3-3}{3+3}=0\)

Do ĐKXĐ của phương trình

\(Q=\dfrac{x^2-6x+9}{x^2-9}\) \(x\ne\pm3\)

29 tháng 8 2018

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

29 tháng 8 2018

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm

25 tháng 8 2018

a) Với x = 24

=> x + 1 = 24 (1)

Thay (1) vào A ta được:

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)

\(A=1\)

b) Với x = 31

=> x - 1 = 30 (1)

Thay (1) vào B ta được

\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)

\(B=x^3-x^3+x^2-x^2+x+1\)

\(B=x+1\)

\(B=31+1=32\)

c) Với x = 14

=> x + 1 = 15

x + 2 = 16

2x + 1 = 29

x - 1 = 13

Thay tất cả biểu thức trên vào C ta được

\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(C=-x\)

\(C=-14\)

d) Ta có:

\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)

\(\Rightarrow\left(-2+x^2\right)^5=1\)

\(\Rightarrow-2+x^2=1\)

\(\Rightarrow x^2=1+2=3\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)

1 tháng 8 2018

Xét   A =  ........ĐK :  x\(\ne\)-1   (*)

         B=.......    ĐK :   x\(\ne\)-1   ;   x\(\ne\)  3  (**)

a)     Ta có  :   x2-4x+3

                      \(\Leftrightarrow\)x2  -3x-x+3

                     \(\Leftrightarrow\)(x -1) (x-3)

                       .......................

                      \(\Leftrightarrow\)x=1(thỏa mãn đk (*)

                      .,,,,,,,,,,,x=3  (thỏa mãn ĐK(*)

Thay x=..... vào A, ta được:................................

...............................................................................

Vậy tai                             thì A=..... hoặc A =..................

b)    Xét B=................... ĐK.............

   Ta có  x-2x-3

  =  x2--3x+x -3

= (x+1) (x-3)

\(\Rightarrow B=\frac{x+3}{x+1}+\frac{x-7}{\left(x+1\right)\left(x-3\right)}+\frac{1}{x-3}\)

\(\frac{\left(x+3\right)\left(x-3\right)+x-7+x+1}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{x^2-9+2x-6}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{x^2+2x-15}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{\left(x+1\right)^2-16}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{\left(x+1+4\right)\left(x+1-4\right)}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{x+5}{x+1}\)

Vậy B=.......với x\(\ne\)..............

c)   +) Tìm x để B= 2

Để B=2 thì  \(\frac{x+5}{x+1}\)=2

\(\Leftrightarrow\frac{x+5-2\left(x+1\right)}{x+1}=0\)

\(\Leftrightarrow x+5-2x-2=0\)

........................................................

Vậy để B=2 thì x=...........

TƯƠNG TỰ B=x-1

d)    XÉT B=...........ĐK.....................

  ĐỂ B>2 THÌ ........................

GIẢI RA

g) Xét........................

Ta có \(B=\frac{x+5}{x+1}=1+\frac{4}{x+1}\)

Vì x\(\in\)Z nên   (x+1) \(\in\)Z

Do đó A\(\in\)\(\Leftrightarrow\)\(1+\frac{4}{X+1}\)\(\inℤ\)

                              \(\Leftrightarrow\frac{4}{X+1}\inℤ\)

                                    \(\Leftrightarrow4⋮\left(X+1\right)\)

                                   \(\Leftrightarrow\left(X+1\right)\inƯ\left(4\right)\)

                                     \(\Leftrightarrow\left(X+1\right)\in\hept{\begin{cases}\\\end{cases}\pm1;\pm2;\pm4}\)

Nếu x+1=1\(\Leftrightarrow\)x=0(thỏa mãn ĐK(**); X\(\inℤ\)

.............................................................................................

...............................................................................

Vậy để B nguyên thì x\(\in\hept{\begin{cases}\\\end{cases}}\).......................................................

e) XIN LỖI MÌNH CHỈ BIẾT TÌM GTNN CỦA B VỚI MỌI GIA TRỊ CỦA X