Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
\(x^2m-2\left(m-1\right)x+m+1=0\)
\(\Delta=b^2-4ac\)
\(\Rightarrow\Delta=4m+4\)
Để phương trình có 2 nghiệm phân biệt
\(\Rightarrow\Delta>0\Leftrightarrow m>-1\)
Theo định lý Viet
\(\Rightarrow\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1.x_2=\frac{m+1}{m}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left[\frac{2\left(m-1\right)}{m}\right]^2\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^2+x_2^2+2x_1x_2=\frac{4\left(m-1\right)^2}{m^2}\left(1\right)\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)
Xét phương trình ( 1 )
\(pt\left(1\right)\Leftrightarrow16+\frac{2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)
\(\Leftrightarrow\frac{16m+2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)
\(\Leftrightarrow\frac{18m+2}{m}=\frac{4\left(m^2-2m+1\right)}{m^2}\)
\(\Leftrightarrow m^2\left(18m+2\right)=4m\left(m^2-2m+1\right)\)với m khác 0
\(\Leftrightarrow m\left(18m+2\right)=4\left(m^2-2m+1\right)\)
\(\Leftrightarrow18m^2+2m=4m^2-8m+4\)
\(\Leftrightarrow14m^2+10m-4=0\)
\(\Delta=b^2-4ac\)
\(\Rightarrow\Delta=324\)
\(\Rightarrow\hept{\begin{cases}m_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-10+\sqrt{324}}{28}\\m_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-10-\sqrt{324}}{28}\end{cases}}\)
Do \(m>-1\)
\(\Rightarrow m=\frac{-10+\sqrt{324}}{28}\)
có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)
\(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)
\(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)
dầu tiên bn tìm đenta phẩy
sau đó cm nó lớn hơn 0
theo hệ thức viet tính đc x1+x2=... và x1*x2=....
thay vào hệ thức đã cho tính đc ..
trả lời
bn tìm đenta rồi cho lớn hơn 0 đã đi
hok tốt
Có \(\Delta=\left(2m-1\right)^2-4\left(m+1\right)\)
\(=4m^2-4m+1-4m-4\)
\(=4m^2-8m-3\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\orbr{\begin{cases}m< \frac{2-\sqrt{7}}{2}\\m>\frac{2+\sqrt{7}}{2}\end{cases}}\)(1)
Theo Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=m+1\end{cases}}\)
Vì \(x_1>x_2>0\Rightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-2m>0\\m+1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{2}\\m>-1\end{cases}}\)
\(\Leftrightarrow-1< m< \frac{1}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-1< m< \frac{2-\sqrt{7}}{2}\)