\(\frac{m-2}{m+2}x+3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Để hàm số là hàm bậc nhất thì \(\hept{\begin{cases}m-2\ne0\\m+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne2\\m\ne-2\end{cases}}}\)

16 tháng 12 2021

lớp 5 nin ko bít đấy hả

16 tháng 12 2021

ko biết hư não òi

10 tháng 8 2020

a) Ta có : \(y=\sqrt{2-m}\left(x+1\right)\)

\(=x\sqrt{2-m}+\sqrt{2-m}\)

Để \(y\) là hàm số bậc nhất \(\Leftrightarrow\sqrt{2-m}\ne0\)

\(\Leftrightarrow m\ne4\)

b) Ta có : \(y=\frac{\sqrt{m-5}}{\sqrt{m+5}}x+\sqrt{2}\)

Để \(y\) là hàm số bậc nhất \(\Leftrightarrow\frac{\sqrt{m-5}}{\sqrt{m+5}}\ne0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{m-5}{m+5}\ne0\\m\ne-5\end{cases}}\) \(\Leftrightarrow m\ne\pm5\)

24 tháng 8 2015

a) Vì \(\frac{1}{\sqrt{m-1}}\) > 0 với mọi m > 1 nên \(\frac{1}{\sqrt{m-1}}+1\ne0\) với mọi m > 1 

=> Với m > 1 thì Hàm số đã cho là hàm số bậc nhất

b) \(y=-\frac{m^2-2}{m+1}x+\frac{5\left(m^2-2\right)}{m+1}\)

Để hàm số đã cho là hàm bậc nhất <=> \(\frac{m^2-2}{m+1}\ne0\) <=> \(m^2-2\ne0;m+1\ne0\)

<=> \(m\ne\sqrt{2};-\sqrt{2};-1\)

Vậy với \(m\ne\sqrt{2};-\sqrt{2};-1\) thì hs đã cho là hs bậc nhất

NM
18 tháng 9 2021

Để hàm ssoo đã cho là hàm số bậc nhất thì 

a\(\frac{m}{2}\ne0\Leftrightarrow m\ne0\)
b\(3m+1\ne0\Leftrightarrow m\ne-\frac{1}{3}\)
c\(\hept{\begin{cases}\sqrt{5-m}\ne0\\5-m\ge0\end{cases}\Leftrightarrow m< 5}\)
18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến