Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0
=>m>3
Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0
=>m<3
Bài 4:
a: Vì \(a=3-\sqrt{2}>0\)
nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R
b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)
Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)
Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)
Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)
=9-4-1
=9-5
=4
Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)
\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)
Hàm số đồng biến khi m – 1 > 0 hay m > 1.
Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).
Hàm số nghịch biến khi 5 – k < 0 hay k < 5.
Kết hợp với điều kiện (**) ta được với k < 5 thì hàm số nghịch biến.
a, y= 5x - (2-x)k = 5x - 2k + k.x = (5+k)x - 2k
Vậy hàm số có hệ số a= 5+k. Khi đó:
+ Hàm số đồng biến a > 0 ⇔ 5 + k > 0 ⇔ k > -5
+ Hàm số nghịch biến a < 0 ⇔ 5 + k < 0 ⇔ k < -5.
a,khi m-1>=0 thi ham so dong bien tuc m>=1
b,khi 5-k<=0 thi ham so nghich bien tuc k>=5
a) Khi m - 1 \(\ge\)0 thì hàm số đồng biến tức m \(\ge\)1
b) Khi 5 - k \(\le\)0 thì hàm số nghịch biến tức k \(\ge\)5
a, y là hàm số bậc nhất khi \(2-m\ne0\Leftrightarrow m\ne2\)
b , y đồng biến khi 2 - m > 0 => m < 2
y nghịch biến khi 2 - m < 0 => m > 2
c, (d) // y=4-x khi
\(\hept{\begin{cases}2-m=4\\m-1\ne-x\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-2\\m\ne-x+1\end{cases}}\Leftrightarrow m=-2\)
👍👍✔✔✔