Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4 + x^3 - 3x^2 + x + 2 x^2 -1 x^2 + x - 2 x^4 - x^2 x^3 - 2x^2 + x x^3 -x -2x^2 +2x +2 -2x^2 +2 2x
b, tuong tu
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
2x^5 + 4x^4 - 7x^3 - 44 2x^2 - 7 x^3 + 2x^2 +7 2x^5 - 7x^3 4x^4 - 44 4x^4 - 14x^2 - 14x^2 - 44 14x^2 - 49 5
Để \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
\(\Leftrightarrow5⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng sau :
\(2x^2-7\) | 1 | -1 | 5 | -5 |
x | \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) |
Vì x là số nguyên \(\Rightarrow x\in\left\{2;-2;1;-1\right\}\)
Vậy \(x\in\left\{2;-2;1;-1\right\}\) thì \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
Chứng minh giá trị của biểu thức A không phụ thuộc vào biến x
1) A= (3x-5)(2x+11)-(2x+3)(3x+7)
A = 6x2 -10x +33x -55 - (6x2 +9x +14x +21)
A = 6x2 -10x +33x -55 - 6x2 - 9x - 14x - 21
A = -76
Vậy A không phụ thuộc vào biến x
2) tìm số nguyên a hay số thực bạn xem lại đầu bài nhé
3) tìm giá trị nhỏ nhất của biểu thức A = 4x2 -8x +2017
A = 4x2 -8x +2017 = (2x)2 -2.2x.2 +22 +2015 = (2x-2)2 +2015
Ta có (2x-2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0
vậy A = (2x-2)2 +2015 nhỏ nhất là bằng 2015 khi và chỉ khi 2x-2 = 0 <=> x = 1
a: \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
\(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49+5⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{2;-2;1;-1\right\}\)
b: \(2x^2+3x+3⋮2x-1\)
\(\Leftrightarrow2x^2-x+4x-2+5⋮2x-1\)
\(\Leftrightarrow2x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{1;0;3;-2\right\}\)
\(\Leftrightarrow8x^3-2x^2-15x+m=\left(4x-3\right)\cdot a\left(x\right)\)
Thay \(x=\dfrac{3}{4}\Leftrightarrow8\cdot\left(\dfrac{3}{4}\right)^3-2\left(\dfrac{3}{4}\right)^2-15\cdot\dfrac{3}{4}+m=0\)
\(\Leftrightarrow8\cdot\dfrac{27}{64}-2\cdot\dfrac{9}{16}-\dfrac{45}{4}+m=0\\ \Leftrightarrow\dfrac{27}{8}-\dfrac{9}{8}-\dfrac{45}{4}+m=0\\ \Leftrightarrow\dfrac{9}{4}-\dfrac{45}{4}+m=0\\ \Leftrightarrow m-9=0\\ \Leftrightarrow m=9\)