Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm (d) và (P) là:
\(x^2=-\left(m+2\right)x-m-1\)
\(\Leftrightarrow x^2+\left(m+2\right)x+m+1=0\)(1)
Để (d) cắt (P) tại hai điểm phân biệt thì phương trình (1) có hai nghiêm phân biệt. Khi đó:
\(\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(m+1\right)=m^2>0\Leftrightarrow m\ne0\)
Với \(m\ne0\)phương trình (1) có hai nghiệm phân biệt \(x_1,x_2;x_1>x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m+1\end{cases}}\)
Do hai điểm nằm khác phía với trục tung nên \(x_1,x_2\)trái dấu nên \(m+1< 0\Leftrightarrow m< -1\).
\(\sqrt{y_1}+\sqrt{y_2}=\sqrt{x_1^2}+\sqrt{x_2^2}=\left|x_1\right|+\left|x_2\right|=x_1-x_2=2\)(do hai điểm nằm khác phía với trục tung)
\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-m}{2}\\x_2=\frac{-m-4}{2}\end{cases}}\)
\(x_1x_2=-\frac{m}{2}\left(\frac{-m-4}{2}\right)=\frac{m\left(m+4\right)}{4}=m+1\Leftrightarrow m=\pm2\).
Vậy \(m=-2\).

???????????????????????????????????????????????????????????
a, thay m = 2 vào đthg d \(\Rightarrow\)y = -2x+1
- Cho x =0 \(\rightarrow\)y = 0
- Cho y = 0\(\rightarrow\) x = \(\frac{1}{2}\)
( Vẽ đthg d )
Cho x = \(\pm1\), \(\pm2\) \(\rightarrow\)y = 1 ; 4
( Vẽ Parabol P ).
b, Xét phương trình hoành độ giao điểm :
x2 = -mx+1 \(\rightarrow\) x2 + mx -1 = 0
\(\Delta\)= m2 - 4.1.(-1) =m2 + 4
\(\rightarrow\)\(\Delta\)\(\ge\)0 \(\forall x\inℝ\)(đpcm)

xét phương trình hoành độ giao điểm của ( p ) vả ( d )
\(x^2=2\left(m+3\right)x+1-4m\)
\(< =>x^2-2\left(m+3\right)x-1+4m=0\)
ta có : ( \(a=1;b=2\left(m+3\right);b'=m+3;c=-1+4m\) )
\(\Delta'=b'^2-ac\)
\(\Delta'=\left(m+3\right)^2-1.\left(-1+4m\right)\)
\(\Delta'=m^2+2m3+3^2+1-4m\)
\(\Delta'=m^2+6m+9+1-4m\)
\(\Delta'=m^2+6m-4m+1+9\)
\(\Delta'=\left(m^2+2m.1+1^2\right)+9\)
\(\Delta'=\left(m+1\right)^2+9>0;\forall m\)
Vay : với mọi m thì (đ) cắt (đ) tại 2 điểm phân biệt cùng nằm bên phải trục tung
CHÚ Ý : NẾU BẠN LẤY \(\Delta'\)> 0 rồi tìm tham số m ( là sai nha )
vì : bất kỳ m là số nào thì ( đ) cũng luôn cắt ( đ) tại 2 điểm phân biệt bên phải trục tung
( m không thuộc riêng về 1 giá trị nào hết nha )
OK CHÚC BẠN HỌC TỐT !!!!

Xét pt tọa độ giao điểm:
X²=(m+4)x-2m-5
<=> -x²+(m+4)x-2m-5
a=-1. b= m+4. c=2m-5
Để pt có 2 No pb =>∆>0
=> (m+4)²-4×(-1)×2m-5>0
=> m² +2×m×4+16 +8m-20>0
=> m²+9m -2>0
=> x<-9 và x>0

Bài này giải như số ý, kết luận khác chút.
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=\left(k-1\right)x+4\)
\(\Leftrightarrow x^2-\left(k-1\right)x-4=0\)
( a = 1; b = - (k-1); c = -4 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(k-1\right)\right]^2-4.1.\left(-4\right)\)
\(=\left(k-1\right)^2+16>0\forall k\)
Vậy: (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Theo Vi-et ta có: \(\hept{\begin{cases}S=y_1+y_2=-\frac{b}{a}=k-1\\P=y_1y_2=\frac{c}{a}=-4\end{cases}}\)
Ta có: \(y_1+y_2=y_1y_2\)
\(\Leftrightarrow S=P\)
\(\Leftrightarrow k-1=-4\)
\(\Leftrightarrow k=-3\left(TMĐK\right)\)
Vậy: k = -3 là giá trị cần tìm

PT hoành độ giao điểm của (d) và (P) :\(x^2=2mx^{ }-m^2+m\Leftrightarrow x^2-2mx+m^2-m=0\left(1\right)\)
pt(1) có 2 nghiệm phân biệt \(\Rightarrow\Delta'>0\)
\(\Leftrightarrow m>0\) (\(\circledast\))
mat khac de pt (1) co 2 nghiem phan biet thoa \(2x_1+3x_2=6\)
\(\Rightarrow\left\{{}\begin{matrix}2x_1+3x_2=6\left(1\right)\\x_1+x_2=2m\left(2\right)\\x_1.x_2=m^2-m\left(3\right)\end{matrix}\right.\)
tu (1) va (2) \(\Rightarrow x_1=6\left(m-1\right);x_2=6-4m\)
thay x1 va x2 vao (3) \(\Rightarrow6\left(m-1\right)\left(6-4m\right)=m\left(m-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}m-1=0\\6\left(6-4m\right)=m\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{36}{25}\end{matrix}\right.thoa\left(\circledast\right)\)
vậy có 2 giá trị m=1 ;36/25 cần tìm
Lời giải:
Để $(d)$ cắt $(P)$ tại hai điểm phân biệt thì PT hoành độ giao điểm $x^2-(3x+2k-3)=x^2-3x+(3-2k)=0$ có 2 nghiệm phân biệt
Điều này xảy ra khi mà:
$\Delta=9-4(3-2k)>0$
$\Leftrightarrow -3+8k>0$
$\Leftrightarrow k> \frac{3}{8}$