Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
a: 2k^2+kx-10=0
Khi x=2 thì ta sẽ có: 2k^2+2k-10=0
=>k^2+k-5=0
=>\(k=\dfrac{-1\pm\sqrt{21}}{2}\)
b: Khi x=-2 thì ta sẽ có:
\(\left(-2k-5\right)\cdot4-\left(k-2\right)\cdot\left(-2\right)+2k=0\)
=>-8k-20+2k-4+2k=0
=>-4k-24=0
=>k=-6
c: Theo đề, ta có:
9k-3k-72=0
=>6k=72
=>k=12
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))
Vì x = 5 là nghiệm của phương trình trên nên
Thay x = 5 vào phương trình trên ta được :
\(25+5k+15=0\Leftrightarrow40+5k=0\Leftrightarrow k=-8\)
Vậy k = -8 <=> x = 5
Với $k=0$ ta có:$x=-2$.Suy ra $k=0$ thỏa.
Với $k \ne 0$:
$\Delta =(1-2k)^2-4k(k-2)=4k+1$
Để phương trình đã cho có nghiệm hữu tỉ thì $\Delta$ phải là một số chính phương.
Do $4k+1$ là số lẻ nên ta giả sử:
$4k+1=(2m+1)^2=4m^2+4m+1\Rightarrow k=m(m+1)$
Do $k \in Z$ và kết hợp 2 trường hợp trên ta suy ra:
$k$ là tích của hai số nguyên liên tiếp.
Bài 1 :
Theo định lý vi-et ta có:
{xy=a+bx+y=ab{xy=a+bx+y=ab (với x,y là nghiệm của phương trình)
Giả sử ab>xy Suy ra x+y>xy suy ra x(1-y)+y-1>-1 suy ra (x-1)(y-1)<1 suy ra x=1 hoặc y=1
Suy ra 1-ab+a+b=0(vì tổng các hệ số =0) suy ra a=(1+b)/(b-1) ( đến đoạn này là ok)
Giả sử xy>ab Suy ra a+b>ab suy ra a=1 hoặc b=1
Với a=1 suy ra điều kiện để pt có nghiêm nguyên là: b2−4(1+b)=k2⇒(b−2−k)(b−2+k)=8b2−4(1+b)=k2⇒(b−2−k)(b−2+k)=8 (đến đoạn này ok)
Trường hợp còn lại CM tương tự
Bài 2 :
Để phương trình có ít nhất một nghiệm thì:
Δ=(2p−1)2−4⋅3⋅(p2−6p+11)≥0
=−8p2+68p−131 (1)
Giải pt (1) ta được:
p=17±3√34
a/thay x=2 vào pt ta có:
\(2x^2+kx-10=0\Leftrightarrow2k-2=0\) \(\Leftrightarrow k=1\)
b/thay x=-2 vào pt ta có:
\(\left(k-5\right)x^2-\left(k-2\right)x+2k=0\) \(\Leftrightarrow4\left(k-5\right)-2\left(k-2\right)+4=0\)
\(\Leftrightarrow2\left(2k-10-k+2\right)+4=0\)\(\Leftrightarrow k-8=-2\Leftrightarrow k=6\)
c/thay x=-3 vào pt ta có:
\(kx^2-kx-72=0\Leftrightarrow9k+3k-72=0\)
\(\Leftrightarrow3\left(k+3\right)\left(3k-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=-3\\k=\frac{8}{3}\end{matrix}\right.\)