Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)
=\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)
=\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1
Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1
2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)
=\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)
Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)
a) Đặt \(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(Min_A=4\Leftrightarrow x=1\)
b) Đặt \(B=x^2+y^2+2x+6y+12=\left(x+2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+2\ge2\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)
Vậy \(Min_B=2\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}\)
c) Đặt \(C=5x-x^2=-\left(x^2-5x+6,25\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\)
Dấu "=" xảy ra : \(\Leftrightarrow x-2,5=0\Leftrightarrow x=2,5\)
Vậy \(Max_C=6,25\Leftrightarrow x=2,5\)
d) Sửa đề:
Đặt \(D=-x^2-4x-7=-\left(x^2+4x+4\right)-3=-\left(x+2\right)^2-3\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(Max_D=-3\Leftrightarrow x=-2\)
a)x2-2x+5
=x2-2x+1+4
=(x+1)2+4
Vì (x+1)2\(\ge\)0 nên (x+1)2\(\ge\)4
Dấu "=" xảy ra khi x+1=0\(\Leftrightarrow\)x=-1
Vậy GTNN của BT là 4 khi x=1
b)(x2+2x+1)+(y2+6y+9)+2
=(x+1)2+(y+3)2+2
Vì (x+1)2+(y+3)2\(\ge\)0 nên (x+1)2+(y+3)2+2\(\ge\)2
Dấu "=" xảy ra khi x+1=0và y+3=0 <=> x=-1 và x=-3
Vậy GTNN của BT là 2 khi x=1 và x=3
c)5x – x^2
= -(x^2 - 5x + 25/4 ) + 25/4
= -(x-5/2)^2 + 25/4 ≤ 25/4 ∀x
vậy GTLN = 25/4 khi x - 5/2 = 0 => x = 5/2
d)=-(x2+4x+7)
=-(x2+4x+4+3)
=-(x2+4x+4)-3
=-(x+2)2-3
Vì (x+2)2\(\ge\)0 nên -(x+2)2\(\le\)0 =>-(x+2)2-3\(\le\)-3
Dấu "=" xảy ra khi x+2=0<=>x=-2
Vậy GTLN của BT là -3 KHI X=-2
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 \(\ge\)0
=> (x + 1/2)2 + 3/4 \(\ge\)3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 \(\ge\)0
=> (x2 + 5x)2 - 36 \(\ge\)-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 ≥0
=> (x + 1/2)2 + 3/4 ≥3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 ≥0
=> (x2 + 5x)2 - 36 ≥-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
x^3 -3x+a x^2-2x+1 x+2 x^3-2x^2+x 2x^2-4x+a 2x^2-4x+2 - - a-2
Vì \(x^3-3x+a\)chia cho \(x^2-2x+1\)dư 3
\(\Leftrightarrow a-2=3\)
\(\Leftrightarrow a=5\)
Câu 2:
\(P=5-x^2+2x-4y^2-4y\)
\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\)
Vì \(\hept{\begin{cases}-\left(x-1\right)^2\le0;\forall x\\-\left(2y+1\right)^2\le0;\forall x\end{cases}}\)\(\Rightarrow-\left(x-1\right)^2-\left(2y+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-1\right)^2-\left(2y+1\right)^2+7\le0+7;\forall x\)
Hay \(P\le7;\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}\)
Vậy \(P_{max}=7\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}\)
\(a,-x^2+x+6=-\left(x^2-x-6\right)=-\left(x^2-x+1-7\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}-7\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\right]=\frac{25}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{25}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x-\frac{1}{2}=0< =>x=\frac{1}{2}\)
Vậy...............
b, \(-x^2+2x-4y^2-4y+4=-x^2+2x-4y^2-4y-1-4+9\)
\(=-x^2+2x-1-4y^2-4y-4+9=-\left(x^2-2x+1\right)-\left(4y^2+4y+4\right)+9\)
\(=-\left(x-1\right)^2-\left[\left(2y\right)^2+2.2y+1^2+3\right]+9=-\left(x-1\right)^2-\left[\left(2y+1\right)^2+3\right]+9\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2-3-9=-\left(x-1\right)^2-\left(2y+1\right)^2-12=-12-\left[\left(x-1\right)^2+\left(2y+1\right)^2\right]\le-12\)
(với mọi x)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}< =>\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)
Vậy............
Giải giúp mk câu này lun nha. Cùng vs đề bài 2 câu trên lun
a) -x2 + 4x - 4
b) -x2 + 6x- 15