K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

a) Để \(A(a,2a-1)\) thuộc đồ thị hàm số $y=-2x+3$ thì:

\(2a-1=-2a+3\Rightarrow a=1\)

b) Để $A(a,2a-1)$ thuộc đồ thị hàm số $y=-x+5$ thì:

\(2a-1=-a+5\Rightarrow a=2\)

c) \(2a-1=3a-1\Rightarrow a=0\)

d) \(2a-1=\frac{1}{3}a-\frac{2}{3}\Rightarrow a=0,2\)

Bài 1:

a: Để hàm số đồng biến thì a>0

Để hàm số nghịch biến thì a<0

b: Để hai đường vuôg góc thì a*1=-1

=>a=-1

Bài 2:

PTHĐGĐ là:

1/4x^2=2x+m-4

=>x^2=8x+4m-16

=>x^2-8x-4m+16=0

Δ=(-8)^2-4(-4m+16)

=64+16m-64=16m

Để (P) cắt (d) tại hai điểm phân biệt thì 16m>0

=>m>0

1 tháng 12 2017

Hàm số y = (m-1 )x +2 có phần hệ số a = m-1 , b = 2

Hàm số y = 3x +1 có phần hệ số a' = 3 , b' = 1

Để hàm số y = ( m -1)x +2 song song với hàm số y = x+3 thì

\(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Rightarrow m-1=3\Rightarrow m=4\)

Vậy...

b, Để đồ thị đi qua điểm M(2;-2) \(\Leftrightarrow-2=\left(m-1\right).2+2\)

\(\Leftrightarrow2m-2+2=-2\)

\(\Leftrightarrow m=-1\)

24 tháng 9 2018

a.x>0

b.x>0

c.x>4

d.x>-3.5

25 tháng 9 2018

1)

a) Để biểu thức \(\sqrt{\dfrac{x}{3}}\)có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)

b) Để biểu thức \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)

c) Để biểu thức\(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)

d) Để biểu thức \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow3x\ge-7\Leftrightarrow x\ge\dfrac{-7}{3}\)

2)

a) Để biểu thức \(\sqrt{2x+7}\) có nghĩa thì \(2x+7\ge0\Leftrightarrow2x\ge-7\Leftrightarrow x\ge\dfrac{-7}{2}\)

b) Để biểu thức \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)

c) Để biểu thức \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\dfrac{1}{-1+x}>0\Leftrightarrow-1+x>0\Leftrightarrow x>1\)

5 tháng 1 2018

a, để hàm số y=(m-5)x+2 đồng biến

<=> m-5 > 0 <=> m> 5

b , để hàm số y = (2-m)x-3 đồng biến

<=.> 2-m>0 <=> m<2

Câu a : \(A=\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)

\(=\dfrac{1}{\sqrt{x}}\times\dfrac{x+2\sqrt{x}+1}{\sqrt{x}-1}+1\)

\(=\dfrac{x+2\sqrt{x}+1}{x-\sqrt{x}}+1\)

\(=\dfrac{x+2\sqrt{x}+1}{x-\sqrt{x}}+\dfrac{x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{2x+\sqrt{x}+1}{x-\sqrt{x}}\)

Câu b : Thay \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) vào A ta được :

\(A=\dfrac{2.\dfrac{4}{3}+\sqrt{\dfrac{4}{3}}+1}{\dfrac{4}{3}-\sqrt{\dfrac{4}{3}}}=\dfrac{\dfrac{8}{3}+\dfrac{2\sqrt{3}}{3}+\dfrac{3}{3}}{\dfrac{4}{3}-\dfrac{2\sqrt{3}}{3}}=\dfrac{\dfrac{11+2\sqrt{3}}{3}}{\dfrac{4-2\sqrt{3}}{3}}=\dfrac{11+2\sqrt{3}}{4-2\sqrt{3}}\)

Chúc bạn học tốt

4 tháng 8 2018

Bn ơi nếu như mk bấm máy tính thì nó ra là \(\dfrac{28+15\sqrt{3}}{2}\)