\(a^4-2a^3+a^2\) với 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

\(a^4-2a^3+a^2\)

\(=a^2\left(a^2-2a+1\right)\)

\(=a^2\left(a-1\right)^2\ge0\)

Vậy \(a^4-2a^3+a^2\ge0\)

14 tháng 7 2019

#)Giải :

Ta có : \(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)

\(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)

\(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)

\(=-a^4+2a^2b^2-b^4-c^2+2b^2c^2+2c^2a^2\)

\(=-\left(a^2-b^2\right)^2-c^4+2b^2c^2+2c^2c^2\)

\(=-\left(a^2-b^2\right)^2-c\left(c^2-2b^2+2a^2\right)>0\)

\(\Rightarrow A>0\left(đpcm\right)\)

14 tháng 7 2019

\(A=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

=>\(A=\left(a+b-c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a-b+c\right)\)

do a,b,c la do dai 3 canh tam giac => A>0=>dpcm

6 tháng 7 2017

bình phương VT áp dụng C-S là ra bài này mk làm nhiều r`  bn vào CHTT xem nhé

3 tháng 7 2019

a)

\(\sqrt{\left(3-a\right)^2\cdot a^4}\\ =\sqrt{\left(3-a\right)^2\cdot\left(a^2\right)^2}\\ =\left|3-a\right|a^2\\ =\left[{}\begin{matrix}\left(3-a\right)a^2\\\left(a-3\right)a^2\end{matrix}\right.\left(vìa\ge3\right)\\ \)

b)

\(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\\ =\sqrt{81\cdot16\cdot\left(1-a\right)^2}\\ =9\cdot4\cdot\left|1-a\right|\\ =36\left(a-1\right)\left(vìa>1\right)\)

c) Sao lại cả a và x ở đây vậy !?

d) Lại a và x =.=

3 tháng 7 2019

Cảm ơn bạn nha

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)

26 tháng 5 2017

a)\(\dfrac{\sqrt{243a}}{\sqrt{3a}}=\dfrac{\sqrt{24}.\sqrt{3a}}{\sqrt{3a}}=2\sqrt{6}\)

b)\(\dfrac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=3\sqrt{9b^2}=\left[{}\begin{matrix}9b\\-9b\end{matrix}\right.\)

NV
12 tháng 6 2019

a/ \(\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{-8a}{3a}=-\frac{8}{3}\)

b/ \(\frac{3}{a-1}\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3}{\left(a-1\right)}.\frac{2\left|a-1\right|}{5}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)

c/ \(\frac{3\sqrt{9a^2b^4}}{\sqrt{a^2b^2}}=\frac{9.\left|a\right|.b^2}{\left|a\right|\left|b\right|}=9\left|b\right|\)

d/ \(\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

12 tháng 6 2019

a/ \(=\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{2}{a}.\frac{-4a}{3}=\frac{-8}{3}\)

b/ \(=\frac{3}{a-1}.\frac{\left|2a-2\right|}{5}=\frac{3}{a-1}.\frac{2\left(a-1\right)}{5}=\frac{6}{5}\)

c/ \(=\sqrt{\frac{162a^2b^4}{2a^2b^2}}=\sqrt{81b^2}=9\left|b\right|\)

d/ \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)