Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2015 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử
\(a_1< a_2< ...< a_{2015}\)
Vì \(a_1,a_2,...,a_{2015}\) đều là số nguyên dương nên ta suy ra
\(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)
Suy ra
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2015}\right)\)
\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)
Mâu thuẫn với giả thiết
Do đó điều giả sử là sai
Vậy trong 2015 số đã cho phải có ít nhất 2 số bằng nhau
Bn có sách phát triển toán 8 tập 2 ko? Nếu có thì mở trang 53 bài 399 nhé!!!!
bn có lời giải k đăng lên giúp mik đi tại mik k có sách
Đặt A = a1+a2+a3+...+an
B = a15 + a25 + a35+ ... + an5
Xét X = B - A = (a15 - a1) + (a25 - a2) + ... + (an5 - an)
ai5 - ai = ai(ai4 - 1) = ai (ai-1)(ai+1)(ai2+1) (i = 1;2;3;...;n)
ai (ai-1)(ai+1) chia hết cho 2;3 mà (2;3)=1 nên ai (ai-1)(ai+1) chia hết cho 6. Vậy X chia hết cho 6.
Nếu ai=5k => X chia hết 5.
Nếu ai = 5k\(\pm\)1 => (ai-1)(ai+1) chia hết 5 => X chia hết 5.
Nếu ai = 5k\(\pm\)2 => ai2 + 1 = (5k\(\pm\)2)2 + 1 = 25k2 \(\pm\) 20k + 5 => X chia hết 5.
Mà (6;5) =1 => X = B - A chia hết 30 mà A chia hết 30 => B chia hết 30 hay a15 + a25 + a35+ ... + an5 chia hết 30.