Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(VT\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(VT\ge\sqrt{\left(a+b+c\right)^2+\frac{16}{\left(a+b+c\right)^2}+\frac{65}{\left(a+b+c\right)^2}}\)
\(VT\ge\sqrt{2\sqrt{\frac{16\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}+\frac{65}{2^2}}=\frac{\sqrt{97}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
đề bài
cm
1/a+2 + 1/b+2 +1/c+2 <=1
bn p viết đề chứ???
##thiêndi###
\(\sqrt{a^2+b^2+6c}=\sqrt{a^2+b^2+2c\left(a+b+c\right)}\)
\(=\sqrt{a^2+b^2+2c^2+2bc+2ca}=\sqrt{\left(a+c\right)^2+\left(b+c\right)^2}\)
\(\Rightarrow\frac{a+b}{\sqrt{\left(a+c\right)^2+\left(b+c\right)^2}}=\sqrt{\frac{\left(a+b\right)^2}{\left(a+c\right)^2+\left(b+c\right)^2}}\)
Đặt \(\left(\left(a+b\right)^2;\left(b+c\right)^2;\left(c+a\right)^2\right)=\left(x;y;z\right)\)
\(\Rightarrow P=\sum\sqrt{\frac{x}{y+z}}\)
Đến đây thì dễ rồi, bài toán cơ bản
\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\Rightarrow\frac{x\sqrt{y+z}}{\sqrt{x}}\le\frac{x+y+z}{2}\Rightarrow\sqrt{\frac{y+z}{x}}\le\frac{x+y+z}{2x}\)
\(\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\Rightarrow P\ge\sum\frac{2x}{x+y+z}=2\)
Dấu "=" ko xảy ra nên \(P>2\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
\(\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{6}{2}=3\)(BĐT \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Cái này không khó :v
Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Face khác ;v, theo AM-GM, ta có
\(\dfrac{a+b+c}{2}\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{6}{2}=3\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=2