\(\sqrt{a+b}+2\sqrt{b+3}<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2019

2 số thực dương và \(a+2b< 0\) ạ?

Có gì đó rất ảo diệu ở đây :(

4 tháng 5 2017

bunyakovsky:

\(\left(\sqrt{a+3}+\sqrt{2}.\sqrt{2b+6}\right)^2\le\left(1+2\right)\left(a+2b+9\right)< 3.12=36\)

\(\Rightarrow0< \sqrt{a+3}+2\sqrt{b+3}< 6\)

1 tháng 5 2020

Áp dụng BĐT Cô-si,ta có :

\(a\sqrt{3a\left(a+2b\right)}\le a.\frac{3a+a+2b}{2}=2a^2+ab\)

Tương tự : \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\)

Cộng vế theo vế, ta được :

\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2\left(a^2+b^2\right)+2ab=4+2ab\le4+a^2+b^2\le6\)

Dấu "=" xảy ra khi a = b = 1

1 tháng 5 2020

=3a+2b bằng số thỏa mãn

13 tháng 10 2017

Chứng minh: 

\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow2\left(\sqrt{b+1}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow\frac{2}{\sqrt{b+1}+\sqrt{b}}< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow2\sqrt{b}< \sqrt{b+1}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{b}< \sqrt{b+1}\)(đúng)

Cái còn lại tương tự