Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uk t ấn nhầm . t ghi lại đúng đây c lm hộ t vs
\(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)
Cauchy-Schwarz dạng Engel 2 lần :
\(P=\frac{1}{a\left(2b+2c-1\right)}+\frac{1}{b\left(2c+2a-1\right)}+\frac{1}{c\left(2a+2b-1\right)}\)
\(P=\frac{1}{a\left(-a+b+c\right)}+\frac{1}{b\left(a-b+c\right)}+\frac{1}{c\left(a+b-c\right)}\)
\(P=\frac{1}{a-2a^2}+\frac{1}{b-2b^2}+\frac{1}{c-2c^2}\ge\frac{9}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}\ge\frac{9}{1-\frac{2}{3}}=\frac{9}{\frac{1}{3}}=27\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Cách của bạn sao chỗ cuối lại thế ạ ? Bạn giải hộ mình rõ hơn được không ?
\(a+b=1-c>\frac{1}{2}>c\)
Tương tự \(b+c>a;a+c>b\)
\(VT=\frac{1}{a\left(b+c-a\right)}+\frac{1}{b\left(a+c-b\right)}+\frac{1}{c\left(a+b-c\right)}\)
\(VT\ge\frac{4}{\left(a+b+c-a\right)^2}+\frac{4}{\left(b+a+c-b\right)^2}+\frac{4}{\left(c+a+b-c\right)^2}\)
\(VT\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\ge\frac{4}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\)
\(VT\ge\frac{4}{3}\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\frac{4.81}{3.4}=27\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Từ \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2017\)
\(\Leftrightarrow7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2017\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le2017\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(T=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
\(=\dfrac{1}{\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2c^2+a^2\right)}}\)
\(\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2^2}{2a}+\dfrac{1^2}{b}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2b}+\dfrac{1^2}{c}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2c}+\dfrac{1^2}{a}\right)\)
\(\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\)\(=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\le\sqrt{\left(\dfrac{1}{81}+\dfrac{1}{81}+\dfrac{1}{81}\right)\left(\dfrac{9}{a^2}+\dfrac{9}{b^2}+\dfrac{9}{c^2}\right)}\)
\(\le\sqrt{\dfrac{1}{81}\cdot3\cdot9\cdot2017}=\sqrt{\dfrac{2017}{3}}\)
Vậy \(T_{Max}=\sqrt{\dfrac{2017}{3}}\) khi \(a=b=c=\sqrt{\dfrac{3}{2017}}\)
So kimochiii~
Áp dụng BĐT Cô-si cho các số dương ta có:
(2a+b+c)2 = \(\left[\left(a+b\right)+\left(a+c\right)\right]^2\) \(\ge\) 4(a+b)(a+c)
\(\Rightarrow\) \(\dfrac{1}{\left(2a+b+c\right)^2}\) \(\le\) \(\dfrac{1}{4\left(a+b\right)\left(a+c\right)}\)
Tương tự : \(\dfrac{1}{\left(2b+c+a\right)^2}\) \(\le\) \(\dfrac{1}{4\left(b+c\right)\left(b+a\right)}\)
\(\dfrac{1}{\left(2c+a+b\right)^2}\) \(\le\) \(\dfrac{1}{4\left(c+b\right)\left(c+a\right)}\)
Cộng theo vế 3 đẳng thức trên
\(\dfrac{1}{\left(2a+b+c\right)^2}\)+\(\dfrac{1}{\left(2b+c+a\right)^2}\)+\(\dfrac{1}{\left(2c+a+b\right)^2}\) \(\le\)\(\dfrac{1}{4}\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(b+c\right)\left(b+a\right)}+\dfrac{1}{\left(c+b\right)\left(c+a\right)}\right)\)
=\(\dfrac{1}{4}\left(\dfrac{b+c+a+b+c+a}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\right)\)
=\(\dfrac{1}{2}\left(\dfrac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)
Áp dụng BĐT Cô-si ta có:
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
\(\Rightarrow\) P \(\le\) \(\dfrac{a+b+c}{16abc}\) = \(\dfrac{1}{16}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\) \(\le16\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\) = \(\dfrac{3}{16}\)
\(\Rightarrow\) Pmax = \(\dfrac{3}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\) a = b = c = 1
Vậy Pmax = \(\dfrac{3}{16}\) \(\Leftrightarrow\) a = b = c = 1
Bài 3)
BĐT cần chứng minh tương đương với:
\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)
Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).
BĐT được viết lại như sau:
\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)
Ta nhớ đến hai bổ đề khá quen thuộc sau:
Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)
Cách CM rất đơn giản, Cauchy - Schwarz:
\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)
Tương tự với biểu thức còn lại và cộng vào thu được đpcm
Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
Cách CM: Quy đồng ta có đpcm.
Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)
\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:
\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)
\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)
\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)
\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)
\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )
Do đó \((\star)\) được cm. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c\)
P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.
Bài 1:
Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)
Ta sẽ chứng minh nó là giá trị nhỏ nhất
Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)
\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)
\(\geq2((a-b)^2+(c-a)(c-b))\)
\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)
Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\) và
\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)
BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"
\(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)
\(P=\dfrac{1}{a\left[2b+2c-\left(a+b+c\right)\right]}+\dfrac{1}{b\left[2c+2a-\left(a+b+c\right)\right]}+\dfrac{1}{c\left[2a+2b-\left(a+b+c\right)\right]}\)
\(P=\dfrac{1}{a\left(b+c-a\right)}+\dfrac{1}{b\left(c+a-b\right)}+\dfrac{1}{c\left(a+b-c\right)}\)
\(P=\dfrac{1}{ab+ac-a^2}+\dfrac{1}{bc+ab-b^2}+\dfrac{1}{ca+bc-c^2}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{-a^2-b^2-c^2+2ab+2bc+2ca}=\dfrac{9}{-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow a^2+b^2+c^2-2\left(ab+bc+ca\right)\ge-\left(ab+bc+ca\right)\)
\(\Rightarrow-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]\le ab+bc+ca\)
\(\Rightarrow\dfrac{9}{-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]}\ge\dfrac{9}{ab+bc+ca}\)
Từ ( 1 )
\(\Rightarrow P\ge\dfrac{9}{ab+bc+ca}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow1\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{1}{3}\ge ab+bc+ca\)
\(\Rightarrow27\le\dfrac{9}{ab+bc+ca}\)
\(\Rightarrow P\ge27\)
Vậy \(P_{min}=27\)