\((x+2y+3z+1)^3\) dưới dạng tổng

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2023

(x + 2y + 3z + 1)^3 = x^3 + 6x^2y + 9x^2z + 3x^2 + 12xy^2 + 36xyz + 18xz + 8y^3 + 24y^2z + 12yz + 27z^2 + 9z + 1

bài 1:

a) x2 + 10x + 26 + y2 + 2y

= (x2 + 10x + 25) + (y2 + 2y + 1)

= (x + 5)2 + (y + 1)2

b) z2 - 6z + 5 - t2 - 4t

= (z - 3)2 - (t + 2)2

c) x2 - 2xy + 2y2 + 2y + 1

= (x2 - 2xy + y2) + (y2 + 2y + 1)

= (x - y)2 + (y + 1)2

d) 4x2 - 12x - y2 + 2y + 1

= (4x2 - 12x ) - (y2 + 2y + 1)

= ......................................

ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675

27 tháng 6 2018

\(x^2+6x+9=\left(x+3\right)^2\)

--

\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

--

\(x^3+12x^2+48x+64=\left(x+4\right)^3\)

28 tháng 6 2018

1) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}\)

\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

2) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3+3^3-54-x^3\)

\(=27-54=-27\)

3) \(\left(2x+y\right)^2-\left(y+3x\right)^2\)

\(=4x^2+4xy+y^2-y^2-6xy-9x^2\)

\(=-5x^2-2xy\)

4) \(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)

\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2\)

\(=2\)

10 tháng 6 2015

2xy2+x2y4+1

=(xy2)2+2xy2.1+12

=(xy2+1)2

3 tháng 7 2017

a, \(27^2+13^2+2.37.13=\left(27+13\right)^2\)

b, \(87^2+57^2-174.67=\left(87-57\right)^2\)

c, \(x^2-2xy+2y^2+2y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

d, \(4x^2-12x-y^2+2y+1\)

\(=4\left(x^2-3x\right)-\left(y^2-2y+1\right)+2\)

\(=4\left(x^2-\dfrac{3}{2}.x.2+\dfrac{9}{4}-\dfrac{9}{4}\right)-\left(y-1\right)^2+2\)

\(=\left(x-\dfrac{3}{2}\right)^2-\left(y-1\right)^2-7\)

25 tháng 5 2017

a) x2+6x+9=x2+2.x.3+32=(x+3)2

b) x2+x+\(\dfrac{1}{4}\)=x2+2.x.\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)=(x+\(\dfrac{1}{2}\))2

c) 2xy2+x2y4+1=(xy2)2+2.xy2+1=(xy2+1)2

26 tháng 4 2017

a,(x+3)^2

b,(x+1/2)^2

Ta có: \(\left(x^2+2y+6\right)^2\)

\(=x^4+4y^2+36+2\cdot x^2\cdot2y+2\cdot2y\cdot6+2\cdot x^2\cdot6\)

\(=x^4+4y^2+36+4x^2y+24y+12x^2\)

11 tháng 6 2018

1) \(4x^2-12x+y^2-4y+13\)

\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)

\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)

\(=\left(2x-3\right)^2+\left(y-2\right)^2\)

2) \(x^2+y^2+2y-6x+10\)

\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)

\(=\left(x+1\right)^2+\left(y-3\right)^2\)

3) \(4x^2+9y^2-4x+6y+2\)

\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)

\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)

4) \(y^2+2y+5-12x+9x^2\)

\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)

\(=\left(y+1\right)^2+\left(3x-2\right)^2\)

5) \(x^2+26+6y+9y^2-10x\)

\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)

\(=\left(x-5\right)^2+\left(3y+1\right)^2\)