Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1995^{1995}=a_1+a_2+...+a_n\)
\(\Rightarrow a_1+a_2+...+a_n\)là số lẻ
\(\Rightarrow a_1^3+a_2^3+...+a_n^3\) là số lẻ (1)
Ta lại có:
\(\left(1995^{1995}\right)^3=\left(a_1+a_2+...+a_n\right)3\)
\(\Leftrightarrow1995^{5985}=a_1^3+a_2^3+...+a_n^3+3A\)(2)
Từ (1) và (2) \(\Rightarrow3A\)là số chẵn hay \(3A⋮6\)
Vậy số dư của \(a_1^3+a_2^3+...+a_n^3\)chia cho 6 sẽ đúng bằng số dư của \(1995^{5985}\)chia cho 6
Ta có: \(1995\text{≡}3\left(mod6\right)\Rightarrow1995^{5985}\text{≡}3^{5985}\left(mod6\right)\)(3)
Mà ta có: \(3^{5985}-3=3\left(3^{5984}-1\right)=3.2.B=6.B\) (B chỉ là ký hiệu phần còn lại. Ký hiệu cho gọn)
Từ đây thì ta có: \(3^{5985}\text{≡}3\left(mod6\right)\)(4)
Từ (3) và (4) \(\Rightarrow1995^{5985}\text{≡}3^{5985}\text{≡}3\left(mod6\right)\)
Vậy \(a_1^3+a_2^3+...+a_n^3\) chia cho 6 dư 3
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)
\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)
44^2 =1936
45^2 =2025
phần thừa dư do 2018 không cp : 2018-[1936+(2025-1936-1 )/2] = 38 số
\(S=\dfrac{2}{1}+\dfrac{4}{2}+\dfrac{6}{3}+...+\dfrac{88}{44}+\dfrac{38}{45}=2.44+\dfrac{38}{45}\)
casio ?
bạn đặt cái cần c/m là A
lấy \(A-a_1-a_2-...-a_n\) dễ dàng c/m đc nó chia hết cho 6.
vậy tìm dư của A chia 6 t tìm dư của \(1995^{1995}\) khi chia 6 nha
cái này ở Violympic nè
ta có thể đặt a1=1995^1995
Vì 1995^n cha 6 luôn dư 3 nên a1^3 chia 6 dư 3
Vậy ... dư 3