K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi Pt đường thảng .....y=ax+b(d)

d đi qua M(-1,1)   1=-a+b⇔b=a+1

gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)

d cắt Oy tại \(B\left(O,b\right)\)

\(\Delta AOB\) vuông cân tại o

\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)

\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)

(do d cắt 2 trục tọa độ nên a,b≠0)

vậy PtT đg thảng d:y=x+2

NV
18 tháng 8 2021

Gọi pt đường thẳng có dạng \(y=ax+b\)

Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)

\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)

Thay tọa độ M vào phương trình ta được:

\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)

5 tháng 5 2019

Vì parabol có đỉnh là gốc tọa độ O

nên parabol có dạng: \(y=ãx^2\)(\(a\ne0\))

Để parabol tiếp xúc thì 

hệ \(\hept{\begin{cases}y=ax^2\\y=x-\frac{3}{4}\end{cases}}\)có nghiệm duy nhất 

=>\(ax^2-x+\frac{3}{4}=0\) có nghiệm kép 

=>\(\Delta=1-3a=0\)=>\(a=\frac{1}{3}\)

Vậy phương trình Parabol là \(y=\frac{1}{3}x^2\)

26 tháng 2 2022

a, bạn tự vẽ nhé 

b, Gọi ptđt (D1) có dạng y = ax + b 

(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)

=> (D1) : y = x/2 + b 

Hoành độ giao điểm tm pt 

\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)

\(\Delta'=1-\left(-4b\right)=1+4b\)

Để (D1) tiếp xúc (P) hay pt có nghiệm kép 

\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)

suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)

toạ độ M là tương giao của cái nào bạn ?