Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y' = - .
a) Ta có: \(y'\left(x_0\right)=k\Leftrightarrow\) y' = -4. \(\Rightarrow\)k= -4. Vậy phương trình tiếp tuyến của hypebol tại điểm (; 2) là y - 2 = -4(x - ) hay y = -4x + 4.
b)Ta có:\(y'\left(x_0\right)=k\Leftrightarrow\) y' (-1) = -1.\(\Rightarrow\) k= -1. Ngoài ra, ta có y(-1) = -1. Vậy phương trình tiếp tuyến tại điểm có tọa độ là -1 là
y - (-1) = -[x - (-1)] \(\Leftrightarrow\) y = -x - 2.
c) Gọi x0 là hoành độ tiếp điểm. Ta có
y' (x0) = - <=> - = - <=> x02 = 4 <=> x0 = ±2.
Với x0 = 2 ta có y(2) = , phương trình tiếp tuyến là
y - = - (x - 2) \(\Leftrightarrow\) y = x + 1.
Với x0 = -2 ta có y (-2) = - , phương trình tiếp tuyến là
y - = - [x - (-2)] \(\Leftrightarrow\) y = - x -1
a) Ta có:
y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2
Suy ra phương trình tiếp tuyến cần tìm là:
y – 3 = -2(x – 2) ⇔ y = -2x + 7
b) Ta có: y’ = f’(x) = 3x2 + 8x ⇒ f’(-1) = 3 – 8 = -5
Mặt khác: x0 = -1 ⇒ y0 = -1 + 4 – 1 = 2
Vậy phương trình tiếp tuyến cần tìm là:
y – 2 = -5 (x + 1) ⇔ y = -5x – 3
c) Ta có:
y0 = 1 ⇒ 1 = x2 – 4x + 4 ⇒ x02 – 4x0 + 3 = 0 ⇒ x0 = 1 hoặc x0 = 3
f’(x) = 2x – 4 ⇒ f’(1) = -2 và f’(3) = 2
Vậy có hai tiếp tuyến cần tìm có phương trình là:
y – 1 = -2 (x – 1) ⇔ y = -2x + 3
y – 1 = 2 (x – 3) ⇔ y = 2x – 5
a) Ta có
Do đó, y'<0 <=> <=> x≠1 và x2 -2x -3 <0
<=> x≠ 1 và -1<x<3 <=> x∈ (-1;1) ∪ (1;3).
b) Ta có
Do đó, y’≥0 <=> <=> x≠ -1 và x2 +2x -3 ≥ 0 <=> x≠ -1 và x ≥ 1 hoặc x ≤ -3 <=> x ≥ 1 hoặc x ≤ -3
<=> x∈ (-∞;-3] ∪ [1;+∞).
c).Ta có
Do đó, y’>0 <=>
<=> -2x2 +2x +9>0 <=> 2x2 -2x -9 <0 <=> <=> x∈ vì x2 +x +4 = (x+1/2)2 + 15/4 >0, với ∀ x ∈ R.
TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) C = (-4.78, -5.6) C = (-4.78, -5.6) C = (-4.78, -5.6) D = (7.82, -7.32) D = (7.82, -7.32) D = (7.82, -7.32) E = (-4.82, -6.92) E = (-4.82, -6.92) E = (-4.82, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) G = (-7.14, -8.07) G = (-7.14, -8.07) G = (-7.14, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) I = (-1.74, -9.56) I = (-1.74, -9.56) I = (-1.74, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) K = (-7.17, -8.04) K = (-7.17, -8.04) K = (-7.17, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) M = (-7.24, -7.99) M = (-7.24, -7.99) M = (-7.24, -7.99) N = (12.23, -7.99) N = (12.23, -7.99) N = (12.23, -7.99)
TenAnh1 TenAnh1 A = (-4.3, -9.06) A = (-4.3, -9.06) A = (-4.3, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) B = (11.06, -9.06)
a) Giả sử ∆x là số gia của số đối tại x0 = 1. Ta có:
∆y = f(1 + ∆x) - f(1) = (1 + ∆x)2 + (1 + ∆x) - (12+ 1) = 3∆x + (∆x)2;
= 3 + ∆x; = (3 + ∆x) = 3.
Vậy f'(1) = 3.
b) Giả sử ∆x là số gia của số đối tại x0 = 2. Ta có:
∆y = f(2 + ∆x) - f(2) = - = - ;
= - ; = - = - .
Vậy f'(2) = - .
c) Giả sử ∆x là số gia của số đối tại x0 = 0.Ta có:
∆y = f(∆x) - f(0) = - ( -1) = ;
= ; = = -2.
Vậy f'(0) = -2
1) \(y'=-2x^3-2x\)
Với x=0, ta có: \(y'\left(0\right)=0\)
⇒ Phương trình tiếp tuyến tại điểm M(0;2) là: y=0(x-0)+2=2
2) \(y'=-\dfrac{1}{\left(x+1\right)^2}\)
Với x=2, \(y'\left(2\right)=-\dfrac{1}{\left(2+1\right)^2}=-\dfrac{1}{9}\)
⇒ Phương trình tiếp tuyến tại điểm (2;\(\dfrac{4}{3}\)) là: \(y=-\dfrac{1}{9}\left(x-2\right)+\dfrac{4}{3}=-\dfrac{1}{9}x+\dfrac{14}{9}\)