Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. phương trình tham số d có dạng : \(\left\{{}\begin{matrix}x=2+3t\\y=1+4t\end{matrix}\right.\)
b. phương trình tham số d có dạng: \(\left\{{}\begin{matrix}x=-2+5t\\y=3+t\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x=-5+4t\\y=-2-3t\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x=\sqrt{3}+2t\\y=1+3t\end{matrix}\right.\)
a) Đường thẳng \(d\) đi qua điểm \(A( - 1;5)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {2;1} \right)\), nên có phương trình tham số là:
\(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 5 + t\end{array} \right.\)
Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u = \left( {2;1} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n = \left( {1; - 2} \right)\) và đi qua \(A( - 1;5)\)
Ta có phương trình tổng quát là
\((x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\)
b) Đường thẳng \(d\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 2} \right)\) nên có vectơ chỉ phương \(\overrightarrow u = \left( {2;3} \right)\), và đi qua điểm \(B(4; - 2)\) nên ta có phương trình tham số của \(d\) là :
\(\left\{ \begin{array}{l}x = 4 + 2t\\y = - 2 + 3t\end{array} \right.\)
Đường thẳng \(d\) đi qua điểm \(B(4; - 2)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 2} \right)\)
Phương trình tổng quát của đường thẳng d là:
\(3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\)
c) Đường thẳng \(d\) có dạng \(y = ax + b\)
d đi qua \(P(1;1)\) và có hệ số góc \(k = - 2\) nên ta có:
\(1 = - 2.1 + b \Rightarrow b = 3\)
Suy ra đồ thị đường thẳng d có dạng \(y = - 2x + 3\)
Vậy đường thẳng d có phương trình tổng quát là \(y + 2x - 3 = 0\)
Suy ra đường thẳng d có vectơ pháp tuyến \(\overrightarrow n = \left( {2;1} \right)\), nên có vectơ chỉ phương là \(\overrightarrow u = \left( {1; - 2} \right)\) và đi qua điểm \(P(1;1)\) nên ta có phương trình tham số của d là :
\(\left\{ \begin{array}{l}x = 1 + t\\y = 1 - 2t\end{array} \right.\)
d) Đường thẳng \(d\) đi qua hai điểm \(Q(3;0)\)và \(R(0;2)\) nên có vectơ chỉ phương \(\overrightarrow u = \overrightarrow {QR} = ( - 3;2)\) và có vectơ pháp tuyến \(\overrightarrow n = (2;3)\)
Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 2t\end{array} \right.\)
Phương trình tổng quát của \(\Delta \) là: \(2(x - 3) + 3(x - 0) = \Leftrightarrow 2x + 3y - 6 = 0\)
- Ta có phương trình tham số :
\(\left\{{}\begin{matrix}x=3-t\\y=-5+2t\end{matrix}\right.\) \(\left(t\in R\right)\)
b,
\(d_{\left(A,\Delta\right)}=\frac{\left|3\times1+4\times1-2\right|}{\sqrt{3^2+4^2}}=1\Rightarrow R=1\)
phương trình đường tròn (C):
(x - 1)2 + (y - 1)2 = 12
⇔ x2 + y2 - 2x - 2y + 1 = 0
a,\(\left\{{}\begin{matrix}x=x_0+at\\y=y_0+bt\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1+5t\\y=4-3t\end{matrix}\right.\)
\(\overrightarrow{u}=-3\overrightarrow{i}+4\overrightarrow{j}=-3\left(1;0\right)+4\left(0;1\right)=\left(-3;4\right)\)
=> Phương trình tham số của d:
\(\hept{\begin{cases}x=4-3t\\y=-3+4t\end{cases}}\)
a) Phương trình tham số của đường thẳng \(d:\left\{ \begin{array}{l}x = - 9 + 8t\\y = 5 - 4t\end{array} \right.\)
b) Thay \(y = 1\) vào phương trình \(y = 5 - 4t\) ta được \(1 = 5 - 4t \Rightarrow t = 1\)
Thay \(t = 1\) vào phương trình \(x = - 9 + 8t\), ta được \(x = - 1\)
Vậy \(P( - 1;1)\)
ĐÁP ÁN B
Phương trình tham số của đường thẳng đi qua M (3; 4) và vecto chỉ phương u → ( 3 ; 4 ) là:
x = 3 + 3 t y = 4 + 4 t ( t ∈ R )
Do d \(\left\{{}\begin{matrix}điquaM\left(2;6\right)\\vtcp\overrightarrow{u}=\left(2;-3\right)\end{matrix}\right.\)
=> Pt tham số: \(\left\{{}\begin{matrix}x=2+2t\\y=6-3t\end{matrix}\right.\)