K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

có ai chơi ff ko

Cai nay la mon Sinh hoc dung khong?

NM
6 tháng 9 2021

ta có hệ sau :

\(\hept{\begin{cases}a.3^2+b.3-1=-7&-\frac{b}{2a}=1&\end{cases}\Leftrightarrow\hept{\begin{cases}9a+3b=-6\\b=-2a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=4\end{cases}}}\)

vậy \(2a+b=0\)

23 tháng 12 2015

(P): ax2+bx+c có đỉnh $I(-\frac{b}{2a};-\frac{\Delta}{4a})$, trục đối xứng $x=-\frac{b}{2a}$

a) b=-2a, $\Delta=b^2-4ac=-8a$ nên a-c=-2. Lại có (P) qua M nên a-b+c=-2. Vậy a=-1,b=2,c=1 nên (P):-​-​x2+2x+1

b) b=-4a. Lại có (P) qua A,B nên a+b+c=-6, 16a+4b+c=3. Suy ra a=3, b=-12, c=3. Vậy (P):3x2-12x+3

12 tháng 10 2020

Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có

\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-24\)

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

a) Thay x=1 và y=-2 vào (P), ta được:

\(a\cdot1^2-4\cdot1+c=-2\)

\(\Leftrightarrow a-4+c=-2\)

hay a+c=-2+4=2

Thay x=2 và y=3 vào (P), ta được:

\(a\cdot2^2-4\cdot2+c=3\)

\(\Leftrightarrow4a-8+c=3\)

hay 4a+c=11

Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)

Vậy: (P): \(y=3x^2-4x-1\)

22 tháng 10 2016

(P) đi qua A(1;-4) nên ta có : \(a+b+c=-4\) (1)

(P) tiếp xúc với trục hoành tại x = 3, tức là \(\begin{cases}9a+3b+c=0\\\frac{-b}{2a}=3\end{cases}\)

Từ đó ta có hệ : \(\begin{cases}a+b+c=-4\\9a+3b+c=0\\6a+b=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=-1\\b=6\\c=-9\end{cases}\)

4 tháng 9 2021

Tìm Parabol (P): y=ax2​+bx+c  đi qua điểm A(1;0) và có tung độ đỉnh bằng -1