Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1. Hoành độ giao điểm của (d1) và (d2) chính là nghiệm của pt \(\frac{1}{2}x+3=-2x+1\Leftrightarrow x=-\frac{4}{5}\)
Thay vào (d2) được y = 13/5
Vậy tung độ giao điểm của (d1) và (d2) là \(\frac{13}{5}\)
C2. Đề bài yêu cầu gì?
a, bạn tự vẽ
b, Gọi giao điểm của 2 đường thẳng trên là M( x1,y1)
Tọa độ giao điểm của 2 đường thẳng trên là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-x+3\\y=3x-1\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy.....
c,Phương trình đường thẳng có dạng y=ax+b
Vì đường thẳng qua điểm (2;-5) và song song với đường thẳng d1 nên ta có : a=-1, x=2, y=-5
=>b=-3
Thay a=-1, b=-3 vào cths y=ax+b ta được :
y=-x-3
Vậy...
Lời giải:
Xét (d1)
\(y=4mx-(m+5)\)
\(\Leftrightarrow m(4x-1)-(5+y)=0\)
Để pt đúng với mọi $m$ thì:
\(\left\{\begin{matrix} 4x-1=0\\ 5+y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{4}\\ y=-5\end{matrix}\right.\)
Vậy điểm A cố định khi m thay đổi là \(\left(\frac{1}{4}; -5\right)\)
Xét (d2)
\(y=(3m^2+1)x+(m^2-9)\)
\(\Leftrightarrow m^2(3x+1)+(x-y-9)=0\)
Để pt đúng với mọi m thì \(\left\{\begin{matrix} 3x+1=0\\ x-y-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{1}{3}\\ y=\frac{-28}{3}\end{matrix}\right.\)
Vậy điểm B cố định khi m thay đổi là \(\left(\frac{-1}{3}; \frac{-28}{3}\right)\)
Như vậy ta có đpcm.
\(BA=\sqrt{(-\frac{1}{3}-\frac{1}{4})^2+(\frac{-28}{3}+5)^2}=\frac{\sqrt{2753}}{12}\)
mình mới học lớp 5 ah
hì hì là em mới đúng
Gọi phương trình đường thẳng \(\left(d_1\right)\)có dạng: \(y=ax+b\)
Vì A(-2;3) và B(1;-3) thuộc phương trình đường thẳng nên ta có hệ phương trình:
\(\hept{\begin{cases}3=-2a+b\\-3=a+b\end{cases}\Leftrightarrow}\hept{\begin{cases}-3a=6\\a+b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=-1\end{cases}}\)
Vậy phương trình đường thẳng đi qua 2 điểm A và B là : \(y=-2x-1\)