\(\Delta\): x+3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Ta có đường thẳng \(\Delta\) có hệ số góc \(k=-1\) do đó góc giữa  \(\Delta\) và Ox bằng \(45^0\). Do d tạo với  \(\Delta\) góc \(60^0\) nên d không có phương vuông góc với Ox. Gọi l là hệ số góc của d khi đó d có phương trình : \(y=l\left(x-1\right)+1\).

Theo định lí ta có :

\(\left|\frac{k-l}{1+kl}\right|=\tan60^0\)\(\Leftrightarrow\left|l+1\right|=\sqrt{3}.\left|1-l\right|\)

Giải phương trình ta được \(l=2\pm\sqrt{3}\)

Vậy ta tìm được 2 đường thẳng  thỏa mãn \(d:y=\left(2\pm\sqrt{3}\right)\left(x-1\right)+1\)

8 tháng 5 2016

Bạn không biết làm câu nào vậy

8 tháng 5 2016

a\(2x+3y-7=0\)

b\(3x-2y-4=0\)

c. Đường thẳng d có hệ số góc \(k=-\frac{2}{3}\), do đó d không tạo với trục hoành góc \(45^0\). Suy ra đường thẳng \(\Delta\) cần tìm, tạo với d  góc \(45^0\), không có phương vuông góc với Ox. Gọi \(l\) là hệ số góc của  \(\Delta\) , do góc giữa d và  \(\Delta\)  bằng  \(45^0\) nên ta có phương trình :

\(\left|\frac{l+\frac{2}{3}}{1-\frac{2l}{3}}\right|=1\Leftrightarrow\left|3l+2\right|=\left|3-2l\right|\)

Giải phương trình ta thu được :

\(l=\frac{1}{5}\) hoặc \(l=-5\)

* Với \(l=\frac{1}{5}\), ta được \(\Delta:x-5y+3=0\)

* Với \(l=-5\) ta được \(\Delta:5x+y-11=0\)

d. Đường thẳng t cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right);\left(a^2+b^2\ne0\right)\)

Do góc (t;d) = \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\) nên ta có phương trình :

\(\frac{\left|2a+3b\right|}{\sqrt{13}.\sqrt{a^2+b^2}}=\frac{2}{\sqrt{13}}\Leftrightarrow\left|2a+3b\right|=2\sqrt{a^2+b^2}\)

                              \(\Leftrightarrow b\left(12a+5b\right)=0\)

- Nếu \(b=0\) thì \(a\ne0\), tùy ý và do đó ta có đường thẳng \(t:x-2=0\)

- Nếu \(12a+5b=0\) do \(a^2+b^2\ne0\), có thể chọn \(a=5;b=-12\), do đó ta được đường thẳng :

\(5x-12y+2=0\)

 

 

 

 
3 tháng 4 2016

M(2;-1)

 

NV
30 tháng 5 2020

d/Do d qua Q, gọi phương trình d có dạng:

\(a\left(x-2\right)+b\left(y+2\right)=0\Leftrightarrow ax+by-2a+2b=0\) với \(a^2+b^2\ne0\)

d cách C một đoạn bằng 3 nên:

\(d\left(C;d\right)=3\Leftrightarrow\frac{\left|3a+b-2a+2b\right|}{\sqrt{a^2+b^2}}=3\)

\(\Leftrightarrow\left|a+3b\right|=\sqrt{9a^2+9b^2}\)

\(\Leftrightarrow a^2+9b^2+6ab=9a^2+9b^2\)

\(\Leftrightarrow8a^2-6ab=0\Rightarrow\left[{}\begin{matrix}a=0\\4a=3b\end{matrix}\right.\) chọn \(a=3\Rightarrow b=4\)

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}y+2=0\\3x+4y+2=0\end{matrix}\right.\)

NV
30 tháng 5 2020

c/ Gọi M là trung điểm AB \(\Rightarrow M\left(2;3\right)\)

\(\overrightarrow{AB}=\left(6;2\right)=2\left(3;1\right)\)

Đường thẳng d qua P cách đều AB sẽ có 2 trường hợp xảy ra:

TH1: d qua P và M

\(\overrightarrow{MP}=\left(0;2\right)=2\left(0;1\right)\)

\(\Rightarrow\)Đường thẳng d nhận \(\left(1;0\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)+0\left(y-5\right)=0\Leftrightarrow x-2=0\)

TH2: d qua P và song song AB

\(\Rightarrow\)d nhận \(\left(1;-3\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-3\left(y-5\right)=0\Leftrightarrow x-3y+13=0\)

1 tháng 4 2016

Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)

Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)

Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)

Do đó nếu đường thẳng d tạo với  \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của  \(\Delta_1;\Delta_2\)

Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng  \(\Delta_1\) một góc \(\frac{\pi}{4}\).

Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :

\(ax+by-a-b=0\)

Do  góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên

\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)

                         \(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)

Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)

Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)

 
 
 
 
26 tháng 4 2017

a) Ta có: d(M;\(\Delta\))=\(\dfrac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=2\)

PTTS của \(\Delta\):\(\left\{{}\begin{matrix}x=4t-1\\y=3t-1\end{matrix}\right.\)

Gọi H là hình chiếu của M trên\(\Delta\)=>\(\exists t\in R\)để H(4t-1;3t-1)

MH=2 =>(4t-2)2+(3t+1)2=4

<=>25t2+10t+1=0

<=>(5t+1)2=0

<=>\(t=-\dfrac{1}{5}\)

=>H\(\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)

M' đối xứng với M qua \(\Delta\)=> H là TĐ của MM'

=>tọa độ M'\(\left(-\dfrac{23}{5};-\dfrac{6}{5}\right)\)

b)\(\Delta'\)đối xứng \(\Delta\)qua M=>VTPT của \(\Delta'\)\(\overrightarrow{n}=\left(3;-4\right)\)(1)

Lấy I(-1;-1) => I thuộc \(\Delta\)

Lấy I' đối xứng I qua M=>I'(3;-3) \(\in\Delta'\)(2)

Từ (1) và (2) => phương trình \(\Delta':\)3(x-3)-4(y+3)=0

hay 3x-4y-21=0

c)Đường tròn (C) có tâm M(1;-2) tiếp xúc \(\Delta\)=> bán kính đường tròn bằng \(d_{\left(M;\Delta\right)}\)=2

=>Phương trình đường tròn:

(C): (x-1)2+(y+2)2=4

31 tháng 3 2020

a) Giao điểm d1 và d2

\(\left\{{}\begin{matrix}x+3y-1=0\\x-3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) => A (-2;1)

Đường thẳng d3 có \(\overrightarrow{n_{d3}}=\left(2;-1\right)\) . Delta vuông góc với d3 nên có

\(\overrightarrow{u_{\Delta}}=\left(2;-1\right)\) \(\Rightarrow\overrightarrow{n_{\Delta}}=\left(-1;-2\right)\)

PTđt delta

\(-1\left(x+2\right)+\left(-2\right)\left(y-1\right)=0\)

\(\Leftrightarrow-x-2y+1=0\)

b) Tương tự, tìm được đường thẳng delta đi qua B(-1;-1)

Hệ số k = tan45 = 1 .

Tự xử nốt