K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Mặt phẳng ( β ) song song với trục Oy và vuông góc với mặt phẳng ( α ):

2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên ( β ) là:  j →  = (0; 1; 0) và  n α →  = (2; −1; 3)

Suy ra ( β ) có vecto pháp tuyến là  n β →  =  j →    n α →  = (3; 0; −2)

Mặt phẳng ( β ) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là:  n β →  = (3; 0; −2)

Vậy phương trình của ( β ) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0

29 tháng 6 2018

Vì mặt phẳng (α) song song với mặt phẳng ( β) : 2x – y + 3z + 4 = 0 nên phương trình của mp(α) có dạng 2x – y + 3z + D = 0

Vì M(2; -1; 2) ∈ mp(α) nên 4 + 1 + 6 + D = 0 <=> D = -11

Vậy phương trình của mp(α) là: 2x – y + 3z - 11= 0

26 tháng 5 2017

Hình giải tích trong không gian

26 tháng 7 2017

28 tháng 1 2018

Đáp án B

Mặt khác (P) đi qua điểm A(2 ;1 ;-3) nên ta có phương trình của mặt phẳng (P) là: 1(x - 2) - 1(y - 1) = 0 <=> x - y - 1 = 0.

Vậy đáp án đúng là B

12 tháng 5 2018

20 tháng 6 2017

Đáp án B

Từ giả thiết ta suy ra:

Mặt khác mặt phẳng (P) đi qua điểm A(2;1;3) nên ta có phương trình của mặt phẳng (P) là: 1(x- 2) - 1(y - 1) = 0  x - y - 1 = 0

28 tháng 5 2017

Chọn A

24 tháng 9 2017

Đáp án B.

Phương pháp: Mặt phẳng  α  đi qua M và nhận

Cách giải: Mặt phẳng  α  đi qua M và nhận  là 1 VTPT nên có phương trình:

nên có phương trình:

17 tháng 11 2017

Đáp án B.

Phương pháp: Mặt phẳng  α  đi qua M 

Cách giải: Mặt phẳng  α đi qua M và 

nên có phương trình: