K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: y=ax+b

a=tan alpha=1

=>y=x+b

Thay x=-1 và y=1 vào (d), ta được:

b-1=1

=>b=2

=>y=x+2

d: (Δ)//(d) nên Δ: 3x+4y+c=0

(C): x^2+y^2-2x+2y-7=0

=>x^2-2x+1+y^2+2y+1=9

=>(x-1)^2+(y+1)^2=9

=>R=3; I(1;-1)

Theo đề, ta có: d(I;Δ)=3

=>\(\dfrac{\left|1\cdot3+\left(-1\right)\cdot4+c\right|}{\sqrt{3^2+4^2}}=3\)

=>|c-1|=3*5=15

=>c=16 hoặc c=-14

11 tháng 6 2019

Chọn B.

24 tháng 6 2019

Chọn D.

Ta có: ± b a = ± 2 3 ⇒ a = 3 b = 2 .

Phương trình (H) :  x 2 9 - y 2 4 = 1

19 tháng 11 2018

Đáp án: D

Hypebol có hai đường tiệm cận

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 3)

Vậy phương trình của hypebol là:

x 2 9 - y 2 4 = 1

3 tháng 5 2023

F1(\(-\sqrt{3};0\)) => c=\(\sqrt{3}\)

có: \(b^2=a^2-c^2=a^2-3\)

pt elip di qua M:

\(\dfrac{3}{a^2}+\dfrac{1}{4b^2}=1\)

\(\Leftrightarrow\dfrac{3}{a^2}+\dfrac{1}{4a^2-12}=1\)

dat a^2=t (t>0)

\(\Leftrightarrow\dfrac{3}{t}+\dfrac{1}{4t-12}=1\\ \Leftrightarrow12t-36+t=4t^2-12t\)

\(\Leftrightarrow4t^2-25t+36=0\\ \Leftrightarrow\left[{}\begin{matrix}t=4\\t=\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a^2=4\\a^2=\dfrac{9}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}b^2=1\\b^2=-\dfrac{3}{4}\left(loai\right)\end{matrix}\right.\)

=>ptelip: \(\dfrac{x^2}{4}+\dfrac{y^2}{1}=1\)