\(x^2-\frac{2mx}{\left(m-1\right)}+\frac{\left(c+1\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

Tiếng Việt lớp 1 lạ nhỉ

\(x^2-\left(2m+3\right)x+m^2+3m+2=0.\)\(\left\{x^2-\left(2m+3\right)x+\frac{\left(2m+3\right)^2}{4}\right\}=\frac{\left(2m+3\right)^2+4m^2+12m+8}{4}\)\(\left(x-\frac{2m+3}{2}\right)^2=\frac{8m^2+24m+17}{4}\)\(\Leftrightarrow\hept{\begin{cases}2x-2m+3=\sqrt{8m^2+24m+17}\\2x-2m+3=-\sqrt{8m^2+24m+17}\end{cases}}\)để căn có nghĩa thì\(8m^2+24m+17=\left(m^2+3m+\frac{9}{4}\right)-\frac{1}{8}\ge0\)\(\left(m+\frac{3}{2}\right)^2\ge\frac{1}{8}\) " suy ra m.....vậy pt có 2 nghiệm phân...
Đọc tiếp

\(x^2-\left(2m+3\right)x+m^2+3m+2=0.\)

\(\left\{x^2-\left(2m+3\right)x+\frac{\left(2m+3\right)^2}{4}\right\}=\frac{\left(2m+3\right)^2+4m^2+12m+8}{4}\)

\(\left(x-\frac{2m+3}{2}\right)^2=\frac{8m^2+24m+17}{4}\)

\(\Leftrightarrow\hept{\begin{cases}2x-2m+3=\sqrt{8m^2+24m+17}\\2x-2m+3=-\sqrt{8m^2+24m+17}\end{cases}}\)

để căn có nghĩa thì

\(8m^2+24m+17=\left(m^2+3m+\frac{9}{4}\right)-\frac{1}{8}\ge0\)

\(\left(m+\frac{3}{2}\right)^2\ge\frac{1}{8}\) " suy ra m.....

vậy pt có 2 nghiệm phân biệt với m.....

\(\Leftrightarrow\hept{\begin{cases}x1=\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\\x2=-\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\end{cases}}\)

\(x1< -3\Leftrightarrow-3< \frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\)

\(\Leftrightarrow m>-3-\frac{1}{2}\sqrt{8m^2+24+17}+\frac{3}{2}\)

\(x1< x2\Leftrightarrow\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}< -\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\)

\(\Leftrightarrow0< -\sqrt{8m^2+24+17}\)

\(x2< 6\Leftrightarrow-\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}< 6\)

\(\Leftrightarrow m< 6+\frac{1}{2}\sqrt{8m^2+24+17}+\frac{3}{2}\)

dcpcm =))

 

 

2
5 tháng 9 2018

Câu này là toán lớp 1 ư ???????

6 tháng 9 2018

Toán lớp 1 là đây á

Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)Chứng minh rằng nếu P là số chính phương thì m=nGiả sử \(m>n>1\) Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)\(=-4n^3+4< 0\) với  \(\forall n>1\)\(\Rightarrow\left(mn^2-2\right)^2<...
Đọc tiếp

Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)

Chứng minh rằng nếu P là số chính phương thì m=n

Giả sử \(m>n>1\)

 Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)

\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)

\(=-4n^3+4< 0\) với  \(\forall n>1\)

\(\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4n+4n\right)\left(1\right)\)

Xét \(n^2\left(m^2n^2-4m+4n\right)-m^2n^4\)

\(=m^2n^4-4mn^2+4n^3-m^2n^4\)

\(=-4mn^2+4n^3\)

\(=-4n^2\left(m-n\right)< 0\) với \(\forall m>n>1\)

\(\Rightarrow n^2\left(m^2n^2-4m+4n\right)< m^2n^4\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4m+4n\right)< m^2n^4\)

\(\Rightarrow\left(\frac{mn^2-2}{n}\right)^2< P< \left(mn\right)^2\)

Xét \(\frac{mn^2-2}{n}-\left(mn-1\right)=\frac{n-2}{n}\ge0\)  với \(\forall n\ge2\)

\(\Rightarrow\frac{mn^2-2}{n}\ge mn-1\)

\(\Rightarrow\left(mn-1\right)^2< P< \left(mn\right)^2\left(VL\right)\)

Kẹp giữa 2 số chính phương liên tiếp thì không tồn tại số chính phương nào.OK?

Giả sử \(m< n\)

\(\Rightarrow P>m^2n^2\left(3\right)\)

Xét \(m^2n^2-4m+4n-\left(mn+2\right)^2\)

\(=m^2n^2-4m+4n-m^2n^2-4mn-4\)

\(=n-m-mn-1=n\left(1-m\right)-m-1< 0\) 

\(\Rightarrow P< \left(mn+2\right)^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\left(mn\right)^2< P< \left(mn+2\right)^2\)

Để P là số chính phương thì \(P=\left(mn+1\right)^2\)

\(\Rightarrow m^2n^2-4m+4n=m^2n^2+2mn+1\)

\(\Rightarrow-4m+4n-2mn=1\) quá VL

Với  \(m=n\Rightarrow P=m^2n^2=\left(mn\right)^2\left(Lscp\right)\) cực kỳ HL:v

P/S:Ko chắc đâu nha.m thử làm bài 1 cấy.t cụng ra rồi nhưng coi cách m cho nó chắc:v Định dùng cách kẹp khác mà đề cho chặt quá:((

 

 

1
15 tháng 11 2019

 \(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)

 \(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)

\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)

Đặt : \(F\left(x\right)=ax+b\)

Với x=1  từ (1) và (3) 

\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)

\(\Rightarrow a+b=4\)(*)

Với x=3 từ (3) và (2)

\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)

\(\Rightarrow3a+b=14\)(**)

Từ (*) và (**)

\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)

\(\Rightarrow F\left(x\right)=ax+b=5x-1\)

T lm r, ko bt có đúng ko:))

 \(f\left(-\frac{1}{2}\right)=2x\sqrt{16x^2+3}+\left(3+2x\right)\sqrt{x^2+3x+3}.\)\(F\left(-\frac{1}{2}\right)=-\sqrt{\frac{16}{4}+3}+\left(3-1\right)\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\) vậy  \(x\ne\left(-\frac{1}{2}\right)\)xét tử cả mẫu với \(x>-\frac{1}{2}\)  \(3\left(2x+1\right)\left(5x^2+3x+3\right)>3\left(-1+1\right)\left(\frac{5}{4}-\frac{3}{2}+3\right)=0\)đặt mẫu = Pain\(Pain>-1\sqrt{\frac{16}{4}+3}+2\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\)vậy...
Đọc tiếp

 

\(f\left(-\frac{1}{2}\right)=2x\sqrt{16x^2+3}+\left(3+2x\right)\sqrt{x^2+3x+3}.\)

\(F\left(-\frac{1}{2}\right)=-\sqrt{\frac{16}{4}+3}+\left(3-1\right)\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\) 

vậy  \(x\ne\left(-\frac{1}{2}\right)\)

xét tử cả mẫu với \(x>-\frac{1}{2}\)

 

 \(3\left(2x+1\right)\left(5x^2+3x+3\right)>3\left(-1+1\right)\left(\frac{5}{4}-\frac{3}{2}+3\right)=0\)

đặt mẫu = Pain

\(Pain>-1\sqrt{\frac{16}{4}+3}+2\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\)

vậy với  \(x>-\frac{1}{2}\) thì pt vô nghiệm  (1)

xét tử cả mẫu vỡi \(x< -\frac{1}{2}\)

\(3\left(3x+1\right)\left(5x^2+3x+3\right)< 3\left(-1+1\right)\left(\frac{5}{4}-\frac{3}{2}+3\right)=0\)

\(Pain< -1\sqrt{\frac{16}{4}+3}+2\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\)

vậy với x< (-1/2) thì cả tử cả mẫu đều âm ,  

suy ra với \(x< -\frac{1}{2}\) thì pt cũng vô nghiệm (2)

từ (1)(2) chúa suy ra ...

 

                  

1
26 tháng 11 2021

6666+555-333+111+8888+88+66+44444444=

4 tháng 9 2018

mik ko hỉu bạn

tự đăng tự trả lời \(\sqrt[3]{\frac{1}{2}+x}+\sqrt{\frac{1}{2}-x}=1.\)đặt  \(\frac{1}{2}+x=t\Leftrightarrow x=t-\frac{1}{2}\) " phương pháp thiên chúa "thay vào và rút gọn dc pt như sau  :  \(\sqrt[3]{t}+\sqrt{1-t}=1\)lập phương 2 vế : \(t=\left(1-\sqrt{1-t}\right)^3\)phá lập phương : \(t=1-3\sqrt{1-t}+3\left(1-t\right)-\sqrt{1-t}^3\)     rút gọn            \(t=-3t+\sqrt{1-t}\left(t-4\right)+4\)        siêu rút gọn   ...
Đọc tiếp

tự đăng tự trả lời 

\(\sqrt[3]{\frac{1}{2}+x}+\sqrt{\frac{1}{2}-x}=1.\)

đặt  \(\frac{1}{2}+x=t\Leftrightarrow x=t-\frac{1}{2}\) " phương pháp thiên chúa "

thay vào và rút gọn dc pt như sau  :  \(\sqrt[3]{t}+\sqrt{1-t}=1\)

lập phương 2 vế : \(t=\left(1-\sqrt{1-t}\right)^3\)

phá lập phương : \(t=1-3\sqrt{1-t}+3\left(1-t\right)-\sqrt{1-t}^3\)

     rút gọn            \(t=-3t+\sqrt{1-t}\left(t-4\right)+4\)

        siêu rút gọn      \(4\left(t-1\right)=\sqrt{1-t}\left(t-4\right)\)

ấn máy tính ra 3 nghiệm  t=-8 " loại ,  t=0 nhận , t=1 nhận " 

nếu ko thíc ấn máy tính thì bình phương 2 vế ra pt bậc 3 nghiệm đẹp làm vẫn ok hơi dài thôi :v

\(\hept{\begin{cases}x=t-\frac{1}{2}\Leftrightarrow x=0-\frac{1}{2}=-\frac{1}{2}\\x=t-\frac{1}{2}\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\end{cases}}\)

                              

 

1
5 tháng 9 2018

Tiếng Việt lớp 1 là đây sao ???????????

16 tháng 12 2019

 tự giải ak

16 tháng 12 2019

Có người nhờ giải ấy @gunny :33

13 tháng 5 2020

\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)

\(=x^2+y^2+\frac{2x}{y}+\frac{2y}{x}+\frac{1}{x^2}+\frac{1}{y^2}\)

\(=4+\frac{2x^2+2y^2}{xy}+\frac{x^2+y^2}{x^2y^2}\)

\(=4+\frac{8}{xy}+\frac{4}{x^2y^2}\)

\(=\left(2+\frac{2}{xy}\right)^2\ge0\)

vậy giá trị nhỏ nhất của A là 0.

Nếu phải tìm dấu bằng thì ta rút y theo x rồi thay vào pt đầu ra đc 2 nghiệm x1,x2

23 tháng 5 2020

lop 1 da hoc cai nay dau

3 tháng 9 2018

Bài này mà gọi là "Tiếng Việt lớp 1" ?!!!!!!!!!!!!!!!!!!!!!!!!!!!