\(4x^2-12x+y^2-4y+13\)

2)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

1) \(4x^2-12x+y^2-4y+13\)

\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)

\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)

\(=\left(2x-3\right)^2+\left(y-2\right)^2\)

2) \(x^2+y^2+2y-6x+10\)

\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)

\(=\left(x+1\right)^2+\left(y-3\right)^2\)

3) \(4x^2+9y^2-4x+6y+2\)

\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)

\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)

4) \(y^2+2y+5-12x+9x^2\)

\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)

\(=\left(y+1\right)^2+\left(3x-2\right)^2\)

5) \(x^2+26+6y+9y^2-10x\)

\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)

\(=\left(x-5\right)^2+\left(3y+1\right)^2\)

7 tháng 8 2017

1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)

2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)

3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)

\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)

ta có : \(\left(3x+2\right)^2\ge0\forall x\)\(\left(2y-2\right)^2\ge0\forall y\)

\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)

\(\Rightarrow\) phương trình vô nghiệm

29 tháng 6 2017

1) \(4x^2+4x+1=\left(2x+1\right)^2\)

2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)

3)\(-x^2+10x-25=-\left(x-5\right)^2\)

4)\(1+12x+36x^2=\left(1+6x\right)^2\)

5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)

6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

29 tháng 6 2017

bài toán iêu cầu j z ??? bn

10 tháng 6 2018

a) \(\Rightarrow\left(x^2+2\times5x+25\right)+\left(y^2+2y+1\right)\)

\(\Rightarrow\left(x+5\right)^2+\left(y+1\right)^2\)

9 tháng 8 2021

câu d thì s ạ ?

15 tháng 8 2020

1)

\(=x^2-4x+4+y^2+2y+1\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

2)

\(=a^2+2ab+b^2+a^2-2ax+x^2\)

\(=\left(a+b\right)^2+\left(a-x\right)^2\)

3)

\(=x^2-2x+1+y^2+6y+9\)

\(=\left(x-1\right)^2+\left(y+3\right)^2\)

4)

\(=x^2-2xy+y^2+x^2+10x+25\)

\(=\left(x-y\right)^2+\left(x+5\right)^2\)

5)

\(=a^2+2ab+b^2+4b^2+4b+1\)

\(=\left(a+b\right)^2+\left(2b+1\right)^2\)

15 tháng 8 2020

1/ x2 - 4x + 5 + y2 + 2y 

= ( x2 - 4x + 4 ) + ( y2 + 2y + 1 )

= ( x - 2 )2 + ( y + 1 )2

2/ 2a2 + 2ab - 2ax + x2 + b2

= ( a2 + 2ab + b2 ) + ( x2 - 2ax + a2 )

= ( a + b )2 + ( x - a )2

3/ x2 - 2x + y2 + 6y + 10

= ( x2 - 2x + 1 ) + ( y2 + 6y + 9 )

= ( x - 1 )2 + ( y + 3 )2

4/ 2x2 + y2 - 2xy + 10x + 25

= ( x2 - 2xy + y2 ) + ( x2 + 10x + 25 )

= ( x - y )2 + ( x + 5 )2

5/ a2 + 2ab + 5b2 + 4b + 1

= ( a2 + 2ab + b2 ) + ( 4b2 + 4b + 1 )

= ( a + b )2 + ( 2b + 1 )2

3 tháng 7 2017

1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)

=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)

=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)

=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)

Ta thấy: \((5x-2)^2\ge0\)

=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)

2. \(f\left(x\right)=4x^2-28x+50\)

=> \(f\left(x\right)=(4x^2-28x+49)+1\)

=> \(f\left(x\right)=(2x-7)^2+1\)

Ta thấy: \((2x-7)^2\ge0\)

=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)

3. \(f\left(x\right)=-16x^2+72x-82\)

=> \(f\left(x\right)=-(16x^2-72x+82)\)

=> \(f\left(x\right)=-(16x^2-72x+81+1)\)

=> \(f\left(x\right)=-[(4x-9)^2+1]\)

Ta thấy: \((4x-9)^2\ge0\)

=> \((4x-9)^2+1\ge1>0\)

=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)

5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)

=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)

=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)

Ta thấy: \((2x-3)^2\ge0\)

\((3y+1)^2\ge0\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)

17 tháng 9 2018

Bài 1:

a) \(x^2+10x+26+y^2+2y\)

\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)

\(=\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(4x^2-y^2-12x+2y+8\)

\(=4x^2-12x+9-y^2+2y-1\)

\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

\(=\left(2x-3\right)^2-\left(y-1\right)^2\)

Bài 2:

\(P=4+8x-16x^2\)

\(P=-\left(16x^2-8x+4\right)\)

\(P=-\left[\left(4x\right)^2-2.4x+1+3\right]\)

\(P=-\left(4x-1\right)^2-3\)

\(-\left(4x-1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(4x-1\right)^2-3\le-3\) với mọi x

\(\Rightarrow Pmax=-3\Leftrightarrow4x-1=0\)

\(\Rightarrow4x=1\)

\(\Rightarrow x=\dfrac{1}{4}\)

Vậy Pmax = -3 <=> x = 1/4

bài 1:

a) x2 + 10x + 26 + y2 + 2y

= (x2 + 10x + 25) + (y2 + 2y + 1)

= (x + 5)2 + (y + 1)2

b) z2 - 6z + 5 - t2 - 4t

= (z - 3)2 - (t + 2)2

c) x2 - 2xy + 2y2 + 2y + 1

= (x2 - 2xy + y2) + (y2 + 2y + 1)

= (x - y)2 + (y + 1)2

d) 4x2 - 12x - y2 + 2y + 1

= (4x2 - 12x ) - (y2 + 2y + 1)

= ......................................

ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675

20 tháng 10 2019

a) \(x^2y+2xy+y=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)

b) \(4x^2-4xy-6y^2+6xy=4x\left(x-y\right)+6y\left(x-y\right)=\left(x-y\right)\left(4x+6y\right)\)

\(=2\left(x-y\right)\left(2x+3y\right)\)

c) \(18x^5y+18x^3y-2x^3y^5-2xy^5=18x^3y\left(x^2+1\right)-2xy^5\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(18x^3y-2xy^5\right)=2xy\left(x^2+1\right)\left(9x^2-y^4\right)=2xy\left(x^2+1\right)\left(3x-y^2\right)\left(3x+y^2\right)\)

d)

20 tháng 10 2019

d) \(-12x^5-12x^3y-3xy^2+36x^4+36x^2y+9y^2=-3x\left(4x^4+4x^2y+y^2\right)+9y\left(4x^4+4x^2y+y^2\right)\)\(=\left(4x^4+4x^2y+y^2\right)\left(9-3x\right)\)