Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ:
\(\hept{\begin{cases}\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}}\)
b. ta có \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c. khi \(x=\frac{1}{4}\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}+1}{\frac{1}{2}}=3\)
khi \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{2}+1\Rightarrow A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}=\sqrt{2}\)
\(a,ĐKXĐ:A=x\ge0;x\ne1\)
\(b,A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}}< =>ĐPCM\)
c,thay \(x=\frac{1}{4}\)vào A
\(c,A=\frac{\sqrt{\frac{1}{4}}+1}{\sqrt{\frac{1}{4}}}\)
\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}}\)
\(A=3\)
\(x=3+2\sqrt{2}\)
\(x=\sqrt{2}^2+2\sqrt{2}+1\)
\(x=\left(\sqrt{2}+1\right)^2\)thay x vào A
\(A=\frac{\sqrt{\left(\sqrt{2}+1\right)^2}+1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}\)
\(A=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(A=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)
a, Với x > 0
\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1}{x+\sqrt{x}}=\frac{x-1+1}{x+\sqrt{x}}=\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
b, Ta có : \(A>\frac{2}{3}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2}{3}>0\Leftrightarrow\frac{3\sqrt{x}-2\sqrt{x}-2}{3\left(\sqrt{x}+1\right)}>0\)
\(\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)
c, \(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}+3}{2\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}+2}=\frac{2\sqrt{x}+6}{2\sqrt{x}+2}=1+\frac{4}{2\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+1}\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\sqrt{x}+1\) | 1 | 2 |
\(\sqrt{x}\) | 0 (loại ) | 1 |
x | loại | 1 |
\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)
\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)
b) \(\frac{A}{B}=\frac{\sqrt{x}+4}{\sqrt{x-1}}:\frac{1}{\sqrt{x}-1}=\sqrt{x}+4\)
Để \(\frac{A}{B}\ge\frac{x}{4}+5\)
\(\Leftrightarrow\sqrt{x}+4\ge\frac{x}{4}+5\)
\(\Leftrightarrow4\sqrt{x}+16\ge x+20\)
\(\Leftrightarrow x-4\sqrt{x}+4\le0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\)
Mà \(\left(\sqrt{x}-2\right)^2\ge0;\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow x=4\)
Vậy ...
đk x khác 9, x >= 0
\(p=\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{5\sqrt{x}-3}{x-9}\)
\(p=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}-\frac{5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(p=\frac{x+2\sqrt{x}-3-5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(p=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(p=\frac{\sqrt{x}}{\sqrt{x}+3}\)
b, P.(căn x + 3) = |x - 2|
có P = căn x/ căn x + 3
=> căn x = |x - 2|
=> x = |x - 2|^2
=> x = x^2 - 4x + 4
=> x^2 - 5x + 4 = 0
=> (x-1)(x-4) = 0
=> x = 1 hoặc x = 4 (tm)
vậy x = 1 hoặc x = 4
\(a,\sqrt{3-x}+\sqrt{2-x}=1\)
\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)
\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)
\(\Rightarrow2x+2\sqrt{2-x}=0\)
\(\Rightarrow x+\sqrt{2-x}=0\)
\(\Rightarrow2-x=\left(-x\right)^2\)
\(\Rightarrow2-x=x^2\)
\(\Rightarrow2-x^2-x=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
Vậy....
\(\sqrt{x^3}-\sqrt{x}=\sqrt{x}\left(\sqrt{x}^2-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)đk : \(x>0\)
\(\sqrt{a^3}+a=a\left(\sqrt{a}+1\right)\)đk: \(a>0\)
có sai xót mong mn bỏ qa cho