Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI ĐƠN THỨC PHẢI TÌM LÀ\(ax^py^q\left(p,q\in N\right)\)
ta có \(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.ax^py^q;3x^{n+3}y^{m-2}=\frac{2}{5}ax^{n+p}y^{2+q}\)
suy ra \(3=\frac{2}{5}a\Rightarrow a=3:\frac{2}{5}=\frac{15}{2}=7\frac{1}{2}\)
\(n+3=n+p\)
\(\Rightarrow p=3\)
\(m-2=2+q\)
\(\Rightarrow q=m-2-2=m-4\left(q\in n,vớim\in N,m>4\right)\)
vậy đơn thức cần tìm là\(7\frac{1}{2}x^3y^{m-4}\)và ta có\(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.7\frac{1}{2}x^3y^{m-4}\)
1.\(A=-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(A.\left(B+C\right)=-\dfrac{3}{4}x^2yz\left[\dfrac{1}{3}xy^2+\left(-\dfrac{8}{7}xy^2\right)\right]\)
\(=-\dfrac{3}{4}x^2yz\left(\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2\right)\)
\(=\left(-\dfrac{3}{4}x^2yz\right)\dfrac{1}{3}xy^2-\left(-\dfrac{3}{4}x^2yz\right)\dfrac{8}{7}xy^2\)
\(=-\dfrac{1}{4}x^3y^3z+\dfrac{6}{7}x^3y^3z\)
1. Ta có: \(-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(B+C=\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2=-\dfrac{17}{21}xy^2\)
\(A.\left(B+C\right)=\left(-\dfrac{3}{4}x^2yz\right).\left(-\dfrac{17}{21}xy^2\right)\)
\(\Rightarrow A.\left(B+C\right)=\dfrac{17}{28}x^3y^3z\)
a: \(A=\dfrac{-1}{2}x^2y\cdot\dfrac{3}{2}xy=-\dfrac{3}{4}x^3y^2\)
\(B=x^2y^2\cdot y=x^2y^3\)
\(C=-\dfrac{1}{8}y^3x^2=-\dfrac{1}{8}x^2y^3\)
\(D=-x^2y^2\cdot\dfrac{-2}{3}x^3y=\dfrac{2}{3}x^5y^3\)
Các đa thức đồng dạng là B và C
b: \(\left\{{}\begin{matrix}-\dfrac{3}{4}x^3y^2>0\\-\dfrac{1}{8}x^2y^3>0\\\dfrac{2}{3}x^5y^3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3< 0\\y^3< 0\\xy>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)
Gọi đơn thức phải tìm là: \(ax^py^q\left(p,q\in N\right).\)Ta có:
\(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.ax^py^q;3x^{n+3}y^{m-2}=\frac{2}{5}ax^{n+p}y^{2+q}\)
\(\Rightarrow3=\frac{2}{5}a\Rightarrow a=3:\frac{2}{5}=\frac{15}{2}=7\frac{1}{2}\)
\(n+3=n+p\Rightarrow p=3\)
\(m-2=2+q\Rightarrow q=m-2-2=m-4\left(q\in Nvi-m\in Nva-m>4\right)\)
Vậy đơn thức phải tìm là \(7\frac{1}{2}x^3y^{m-4}\)và ta có \(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.7\frac{1}{2}x^3y^{m-4}\)