Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
a) Ta có thể viết đa thức 5x3−4x2+7x−2 thành tổng của hai đa thức như sau:
5x3−4x2+7x−2 = 5x3+(−4x2+7x−2)
b)Hiệu của hai đa thức:
5x3−4x2+7x−2=5x3−(4x2−7x+2)
*Bạn Vinh nêu nhận xét : " Ta có thể viết đa thức đã cho thành tổng của hai đa thức bậc 4" là đứng.
Vì,chẳng hạn:
5x3−4x2+7x−2=(x4+4x3−3x2+7x−2)+(−x4+x3−x2)
a) P(x)= ( 3x3-2x2) + ( 2x3-2x2+7x-2)
b)P(x)= (5x3+6x2+7x+3)-(10x2+5)
f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)
g(x)=\(x^5-7x^4+4x^3-3x-9\)
f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)
=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))
=\(-14x^4+2x^3+x^2+x\)
a) Sắp xếp các đa thức theo lũy thừa giảm của biến :
\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)
b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)
=> h(x) = -14x4 + 2x3 + x2 +x
\(\left\{{}\begin{matrix}f\left(x\right)=3x^4+5yx^2-3yx+y^4+z^2\\M\left(x\right)=ax^4+bx^2+cx+D\end{matrix}\right.\)
\(f\left(x\right)+M\left(x\right)=\left(3+a\right)x^4+\left(5y+a\right)x^2+\left(-3y+c\right)x+y^4+z^2+D\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-5y\\c=3y\end{matrix}\right.\)\(\Rightarrow M\left(x\right)=-3x^4-5yx^2+3yx+y^4+z^2+D\) với D tùy ý không chứa x
\(\int f\left(x\right)dx=x^3+C\)
\(\sum a\left(b^2-1\right)\left(c^2-1\right)\)
\(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(b^2-1\right)\left(a^2-1\right)\)
\(\begin{matrix}\sum a\left(b^2-1\right)\left(c^2-1\right)=\sum\left(ab^2-a\right)\left(c^2-1\right)=\sum\left(ab^2c^2-ab^2-ac^2+a\right)\\\left(ab^2c^2-ab^2-ac^2+a\right)+\\\left(a^2bc^2-ba^2-bc^2+b\right)+\\\left(a^2b^2c-b^2c-a^2c+c\right)\end{matrix}\)
\(a+b+c\Rightarrow a+b=abc-c\) \(\Rightarrow\sum ab\left(a+b\right)=\sum ab\left(abc-c\right)=\sum a^2b^2c-abc\)
\(\left[abc\left(bc+ac+ab\right)\right]-\left[ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\right]+\left[\left(a+b+c\right)\right]\)
\(\sum a^2b^2c-abc=\left(-abc+a^2b^2c\right)+\left(-abc+a^2bc^2\right)+\left(-abc+ab^2c^2\right)=-3abc+abc\left(ab+bc+ac\right)\)
\(\left[abc\left(bc+ac+ab\right)\right]+3abc-abc\left(ab+bc+ac\right)+\left(a+b+c\right)=3abc+abc=4abc=VP\)
b)x5+2x4−3x2−x4+1−x
=(x5+2x4+1)−(3x2+x4+x)