\(x^5+2x^4-3x^2-x^4+1-x\) 

thành :

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

ai chơi gunny giải đc thì mk tích cho 5 cái

4 tháng 2 2016

 \(x^5+2x^4-3x^2-x^4+1-x=x^5+x^4-3x^2-x+1\)

a. Tổng 2 đa thức:

A + B = \(\left(-2x^5+x^4-5x^2+x-2\right)+\left(3x^5+2x^2-2x+3\right)=x^5+x^4-3x^2-x+1\)

b. Hiệu 2 đa thức:

C - D = \(\left(2x^5-x^4+2x^2-3x+5\right)-\left(x^5-2x^4+5x^2-2x+4\right)=x^5+x^4-3x^2-x+1\)

1 tháng 5 2018

bạn ơi các biểu thức trên 

hình như điều ko có số mũ hay gì

1 tháng 5 2018

có đó bạn

do mình ghi như thế

19 tháng 4 2017

Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:

a) Tổng của hai đa thức một biến.

5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)

b) Hiệu của hai đa thức một biến.

5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)

Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.

Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:

5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).



31 tháng 3 2018

a) Ta có thể viết đa thức 5x3−4x2+7x−2 thành tổng của hai đa thức như sau:

5x3−4x2+7x−2 = 5x3+(−4x2+7x−2)

b)Hiệu của hai đa thức:

5x3−4x2+7x−2=5x3−(4x2−7x+2)

*Bạn Vinh nêu nhận xét : " Ta có thể viết đa thức đã cho thành tổng của hai đa thức bậc 4" là đứng.

Vì,chẳng hạn:

5x3−4x2+7x−2=(x4+4x3−3x2+7x−2)+(−x4+x3−x2)

banhbanhbanh

20 tháng 3 2016

a) P(x)= ( 3x3-2x2) + ( 2x3-2x2+7x-2)

b)P(x)= (5x3+6x2+7x+3)-(10x2+5)

31 tháng 5 2018

f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)

g(x)=\(x^5-7x^4+4x^3-3x-9\)

f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)

=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))

=\(-14x^4+2x^3+x^2+x\)

31 tháng 5 2018

a) Sắp xếp các đa thức theo lũy thừa giảm của biến :

\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)

b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)

=> h(x) = -14x4 + 2x3 + x2 +x

29 tháng 3 2017

\(\left\{{}\begin{matrix}f\left(x\right)=3x^4+5yx^2-3yx+y^4+z^2\\M\left(x\right)=ax^4+bx^2+cx+D\end{matrix}\right.\)

\(f\left(x\right)+M\left(x\right)=\left(3+a\right)x^4+\left(5y+a\right)x^2+\left(-3y+c\right)x+y^4+z^2+D\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-5y\\c=3y\end{matrix}\right.\)\(\Rightarrow M\left(x\right)=-3x^4-5yx^2+3yx+y^4+z^2+D\) với D tùy ý không chứa x

30 tháng 3 2017

\(\int f\left(x\right)dx=x^3+C\)

\(\sum a\left(b^2-1\right)\left(c^2-1\right)\)

\(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(b^2-1\right)\left(a^2-1\right)\)

\(\begin{matrix}\sum a\left(b^2-1\right)\left(c^2-1\right)=\sum\left(ab^2-a\right)\left(c^2-1\right)=\sum\left(ab^2c^2-ab^2-ac^2+a\right)\\\left(ab^2c^2-ab^2-ac^2+a\right)+\\\left(a^2bc^2-ba^2-bc^2+b\right)+\\\left(a^2b^2c-b^2c-a^2c+c\right)\end{matrix}\)

\(a+b+c\Rightarrow a+b=abc-c\) \(\Rightarrow\sum ab\left(a+b\right)=\sum ab\left(abc-c\right)=\sum a^2b^2c-abc\)

\(\left[abc\left(bc+ac+ab\right)\right]-\left[ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\right]+\left[\left(a+b+c\right)\right]\)

\(\sum a^2b^2c-abc=\left(-abc+a^2b^2c\right)+\left(-abc+a^2bc^2\right)+\left(-abc+ab^2c^2\right)=-3abc+abc\left(ab+bc+ac\right)\)

\(\left[abc\left(bc+ac+ab\right)\right]+3abc-abc\left(ab+bc+ac\right)+\left(a+b+c\right)=3abc+abc=4abc=VP\)