K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

\(9^{12}.27^5.81^4=\left(3^2\right)^{12}.\left(3^3\right)^5.\left(3^4\right)^4\)

                         \(=3^{24}.3^{15}.3^{16}\)

                          \(=3^{55}\)

\(64^3.4^5.16^2=\left(4^3\right)^3.4^5.\left(4^2\right)^2=4^{18}\)

\(25^{20}.125^4=\left(5^2\right)^{20}.\left(5^3\right)^4=5^{52}\)

\(x^7.x^4.x^3=x^{14}\)

\(3^6.4^6=\left(3.4\right)^6=12^6\)

\(8^4.2^3.16^2=\left(2^3\right)^4.2^3.\left(2^4\right)^2=2^{23}\)

\(2^3.2^2.\left(2^3\right)^3=2^{14}\)

23 tháng 9 2016

A=22+22+23+24+.........+22005

\(2A=2^3+2^3+2^4+2^5+...+2^{2006}\)

\(2A-A=\left(2^3+2^3+2^4+2^5+...+2^{2006}\right)-\left(2^2+2^2+2^3+2^4+...+2^{2005}\right)\)

\(A=\left(2^{2006}+2^3\right)-\left(2^2+2^2\right)\)

\(A=\left(2^{2006}+2^3\right)-2^3\)

\(A=2^{2006}\)

\(A=2^2+2^2+2^3+2^4+...+2^{2005}\)

\(\Rightarrow2A=2^3+2^3+2^4+2^5+...+2^{2005}+2^{2006}\)

\(\Rightarrow2A-A=\left(2^3+2^3+2^4+2^5+...+2^{2006}\right)-\left(2^2+2^2+2^3+2^4+...+2^{2005}\right)\)

Triệt tiêu hai vế \(\Rightarrow A=\left(2^{2006}+2^3\right)-\left(2^2+2^2\right)=2^{2006}+2^3-2^3\)

\(\Rightarrow A=2^{2006}\)

18 tháng 9 2016

\(a,1^3+2^3=3^2\)

\(b,1^3+2^3+3^3=6^3\)

\(c,1^3+2^3+3^3+4^3=10^2\)

\(d,1^3+2^3+3^3+4^3+5^3=15^3\)

Tổng quát: Nếu \(x^3+y^3+z^3=\left(x+y+z\right)^3\)
 

18 tháng 9 2016

đâu có

28 tháng 4 2015

1.

a.Để A là phân số thì n - 5 khác 0 => n khác 5

b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}

Ta có bảng sau:

n - 51-13-3
n6482

Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.

 

28 tháng 4 2015

2.

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}<\frac{1}{20}.20=1\)

Vậy \(\frac{1}{2}\)< A < 1