Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết các phân số dưới dạng tối giản:
- So sánh các số hữu tỉ dương với nhau:
Ta có :
Vì 39 < 40 và 130 > 0 nên
- Tương tự So sánh các số hữu tỉ âm với nhau
Vậy:
\(0,\left(34\right)=0\left(01\right).34=\dfrac{1}{99}\)
\(0,\left(5\right)=0,\left(1\right).5=\dfrac{1}{9}.5=\dfrac{5}{9}\)
\(0,\left(123\right)=0,\left(001\right).123=\dfrac{1}{999}.123=\dfrac{123}{999}=\dfrac{41}{333}\)
Ta có :
\(0,0\left(8\right)=\dfrac{1}{10}.0,\left(8\right)=\dfrac{1}{10}.0,\left(1\right).8=\dfrac{1}{10}.\dfrac{1}{9}.8=\dfrac{4}{45}\)
\(0,1\left(2\right)=0,1+0,0\left(2\right)\)
\(=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(2\right)=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(1\right).2\)
\(=\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{9}.2=\dfrac{9}{90}+\dfrac{2}{90}=\dfrac{11}{90}\)
\(0,1\left(23\right)=0,1+0,0\left(23\right)=\dfrac{1}{10}+\dfrac{1}{10}.0,23\)
\(=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(01\right).23\)
\(\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{99}.23=\dfrac{99}{990}+\dfrac{23}{990}=\dfrac{122}{990}=\dfrac{61}{495}\)
Vì \(\left(x+2y-3\right)^{2016}\ge0;\left|2x+3y-5\right|\ge0\forall x;y\)
\(\Rightarrow\left(x+2y-3\right)^{2016}+\left|2x+3y-5\right|\ge0\forall x;y\)
Mà \(\left(x+2y-3\right)^{2016}+\left|2x+3y-5\right|=0\) \(\Leftrightarrow\left(x+2y-3\right)^{2016}=0\) ; \(\left|2x+3y-5\right|=0\)
\(\Rightarrow x+2y-3=0;2x+3y-5=0\)
\(\Leftrightarrow x+2y=3;2x+3y=5\)
\(\Rightarrow x=3-2y\)
\(\Rightarrow2\left(3-2y\right)+3y=5\Leftrightarrow6-4y+3y=5\Leftrightarrow6-y=5\Rightarrow y=1\)
\(\Rightarrow x=3-2.1=1\)
Vậy \(x=1;y=1\)
\(m-1⋮2m-1\)
\(\Leftrightarrow2\left(m-1\right)⋮2m-1\)
\(\Leftrightarrow2m-2⋮2m-1\)
\(\Leftrightarrow\left(2m-1\right)-1⋮2m-1\)
\(\Rightarrow1⋮2m-1\) \(\Rightarrow2m-1\inƯ\)(1) = {\(-1;1\)}
Với \(2m-1=-1\Rightarrow2m=0\Rightarrow n=0\) (TM)
Với \(2m-1=1\Leftrightarrow2m=2\Rightarrow m=1\)(TM)
Vậy \(m=\left[0;1\right]\) thì \(m-1⋮2m-1\)
+ \(\frac{8}{9}\)
+ \(\frac{53}{450}\)
+ \(\frac{32}{9}\)
+ Con 4 có vẻ sai đề .bn check lại nhé !
+ \(-\)\(\frac{1706}{99}\)
+ \(\frac{9}{50}\)
1) Vì mẫu của chúng không chứa ước nguyên tố khác 2 và 5:
3/8 có mẫu 8 = 2^3
-7/5 có mẫu 5 = 5
13/20 có mẫu 20 = 2^2 . 5
-13/125 có mẫu 125 = 5^3
Nên: các phân số trên viết được dưới dạng số thập phân hữu hạn
Ta có: 3/8 = 0,375
-7/5 = -1,4
13/20 = 0,65
-13/125 = -0,104
\(0,\left(3\right)=0,\left(1\right).3=\frac{1}{9}.3=\frac{1}{3}\)
\(0,\left(07\right)=0,\left(01\right).7=\frac{1}{99}.7=\frac{7}{99}\)
#